OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 11 — Apr. 10, 2010
  • pp: 2085–2089

Optical waveguides in Nd:GGG crystals produced by H + or C 3 + ion implantation

Ying-Ying Ren, Feng Chen, Qing-Ming Lu, and Hong-Ji Ma  »View Author Affiliations

Applied Optics, Vol. 49, Issue 11, pp. 2085-2089 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (488 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical waveguides in neodymium-doped gadolinium gallium garnet crystal are fabricated, to our knowledge for the first time, by either H + or C 3 + ion implantation. The reconstructed refractive index profiles of the planar waveguides have shown, in both cases, the typical enhanced well + barrier distributions. The two-dimensional modal profiles of the channel waveguides, obtained by using an end-face coupling arrangement, are in good agreement with the simulated modal distributions. After moderate thermal annealing at 200 ° C , the propagation loss of the H- and C-ion-implanted channel waveguides are reduced down to 1.5 and 1.6 dB / cm , respectively, which exhibits acceptable guiding qualities for applications on potential integrated laser generation.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.3380) Materials : Laser materials
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Optical Devices

Original Manuscript: November 30, 2009
Revised Manuscript: March 11, 2010
Manuscript Accepted: March 15, 2010
Published: April 5, 2010

Ying-Ying Ren, Feng Chen, Qing-Ming Lu, and Hong-Ji Ma, "Optical waveguides in Nd:GGG crystals produced by H+ or C3+ ion implantation," Appl. Opt. 49, 2085-2089 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. V. Baburin, B. I. Galagan, Yu. K. Danileiko, N. N. Il'ichev, A. V. Masalov, V. Ya. Molchanov, and V. A. Chikov, “Two-frequency mode-locked lasing in a monoblock diode-pumped Nd3+:GGG laser,” Quantum Electron. 31, 303-304 (2001). [CrossRef]
  2. L. J. Qin, D. Y. Tang, G. Q. Xie, C. M. Dong, Z. T. Jia, and X. T. Tao, “High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal,” Laser Phys. Lett. 5, 100-103 (2008). [CrossRef]
  3. Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth 292, 386-390 (2006). [CrossRef]
  4. N. A. Vainos, C. Grivas, C. Fotakis, R. W. Eason, A. A. Anderson, D. S. Gill, D. P. Shepherd, M. Jelinek, J. Lancok, and J. Sonsky, “Planar laser waveguides of Ti:sapphire, Nd:GGG and Nd:YAG grown by pulsed laser deposition,” Appl. Surf. Sci. 127-129, 514-519 (1998). [CrossRef]
  5. C. L. Bonner, A. A. Anderson, R. W. Eason, D. P. Shepherd, D. S. Gill, C. Grivas, and N. Vainos, “Performance of a low-loss pulsed-laser-deposited Nd:Gd3Ga5O12 waveguide laser at 1.06 and 0.94 μm,” Opt. Lett. 22, 988-990 (1997). [CrossRef] [PubMed]
  6. D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69, 10-12 (1996). [CrossRef]
  7. A. A. Anderson, C. L. Bonner, D. P. Shepherd, R. W. Eason, C. Grivas, D. S. Gill, and N. Vainos, “Low loss (0.5 dB/cm) Nd:Gd3Ga5O12 waveguide layers grown by pulsed laser deposition,” Opt. Commun. 144, 183-186 (1997). [CrossRef]
  8. M. S. B. Darby, T. C. May-Smith, and R. W. Eason, “Deposition and stoichiometry control of Nd-doped gadolinium gallium garnet thin films by combinatorial pulsed laser deposition using two targets of Nd:Gd3Ga5O12 and Ga2O3,” Appl. Phys. A 93, 477-481 (2008). [CrossRef]
  9. J. Gottmann, L. Moiseev, D. Wortmann, I. Vasilief, L. Starovoytova, D. Ganser, and R. Wagner, “Laser deposition and structuring of laser active planar waveguides of Er:ZBLAN, Nd:YAG and Nd:GGG for integrated waveguide lasers,” Proc. SPIE 6459, 64590W (2007). [CrossRef]
  10. R. Gerhardt, J. Kleine-Börger, L. Beilschmidt, M. Frommeyer, H. Dötsch, and B. Gather, “Efficient channel-waveguide laser in Nd:GGG at 1.062 μm wavelength,” Appl. Phys. Lett. 75, 1210-1212 (1999). [CrossRef]
  11. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge U. Press, 1994). [CrossRef]
  12. F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523-1542 (2007). [CrossRef]
  13. F. Chen, Y. Tan, and D. Jaque, “Ion implanted optical channel waveguides in neodymium doped yttrium aluminum garnet transparent ceramics,” Opt. Lett. 34, 28-30 (2009). [CrossRef]
  14. R. Mosimann, F. Juvalta, M. Jazbinsek, P. Günter, and A. A. Grabar, “Photorefractive waveguides in He+ implanted pure and Te-doped Sn2P2S6,” J. Opt. Soc. Am. B 26, 444-449 (2009). [CrossRef]
  15. L.-L. Wang and Y.-G. Yu, “Characterization of laser waveguides in Nd:CNGG crystals formed by low fluence carbon ion implantation,” Appl. Surf. Sci. 256, 2616-2619 (2010). [CrossRef]
  16. Y. X. Kong, F. Chen, D. Jaque, Q. M. Lu, and H. J. Ma, “Optical channel waveguide in Nd/Ce codoped YAG laser crystal produced by carbon ion implantation,” Appl. Opt. 48, 4514-4518(2009). [CrossRef] [PubMed]
  17. S. J. Field, D. C. Hanna, A. C. Tropper, D. P. Shepherd, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion-implanted Nd:GGG channel waveguide laser,” Opt. Lett. 17, 52-54(1992). [CrossRef] [PubMed]
  18. S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “An efficient, diode-pumped, ion-implanted Nd:GGG planar waveguide laser,” Opt. Commun. 86, 161-166 (1991). [CrossRef]
  19. P. Moretti, M. F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, and J. Samecki, “Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals,” Opt. Mater. 24, 315-319 (2003). [CrossRef]
  20. S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Low threshold ion-implanted Nd:YAG channel waveguide laser,” Electron. Lett. 27, 2375-2376 (1991). [CrossRef]
  21. Y. X. Kong, F. Chen, D. Jaque, Y. Tan, N. N. Dong, Q. M. Lu, and H. J. Ma, “Low-dose O3+ ion implanted active optical planar waveguides in Nd:YAG crystals: guiding properties and micro-luminescence,” J. Phys. D 41, 175112 (2008). [CrossRef]
  22. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3optical waveguide resonators,” Appl. Phys. B 36, 143-147(1985). [CrossRef]
  23. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127-143(1986). [CrossRef]
  24. F. Chen, Y. Tan, and A. Rodenas, “Ion implanted optical channel waveguides in Er3+/MgO co-doped near stoichiometric LiNbO3: a new candidate for active integrated photonic devices operating at 1.5 μm,” Opt. Express 16, 16209-16214(2008). [CrossRef] [PubMed]
  25. Y. Tan, F. Chen, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol. 26, 1304-1308(2008). [CrossRef]
  26. N. N. Dong, F. Chen, Y. Tan, and Y. X. Kong, “Proton-implanted optical channel waveguides in Nd3+:MgO:LiNbO3: fabrication, guiding properties, and luminescence investigation,” Appl. Phys. B 94, 283-287 (2009). [CrossRef]
  27. D. Yevick and W. Bardyszewiski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17, 329-330 (1992). [CrossRef] [PubMed]
  28. J. F. Ziegler, computer code, http://www.srim.org.
  29. F. Chen, H. Hu, F. Lei, B. R. Shi, J. H. Zhang, K. M. Wang, D. Y. Shen, and X. M. Wang, “Comparison between MeV Ni+ and He+ ion-implanted planar optical waveguides in quartz,” Opt. Commun. 190, 153-157 (2001). [CrossRef]
  30. D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94, 011109 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited