OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 11 — Apr. 10, 2010
  • pp: 2090–2094

Zernike basis optimization for solar adaptive optics by using information theory

Marco Stangalini, Dario Del Moro, Francesco Berrilli, and Oskar von der Lühe  »View Author Affiliations


Applied Optics, Vol. 49, Issue 11, pp. 2090-2094 (2010)
http://dx.doi.org/10.1364/AO.49.002090


View Full Text Article

Enhanced HTML    Acrobat PDF (537 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Karhunen–Loève functions represent the best choice for modal wavefront reconstruction. They are usually built up as a linear combination of Zernike polynomials by using principal component analysis methods; thus they are ordered by covariance. Using Shannon information theory, we provide a best reordering procedure based on the concept of mutual information. This enhances reconstruction efficiency, allowing us to reduce the basis dimension while maintaining the same fitting error in wavefront reconstruction.

© 2010 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: October 26, 2009
Revised Manuscript: February 10, 2010
Manuscript Accepted: March 14, 2010
Published: April 5, 2010

Citation
Marco Stangalini, Dario Del Moro, Francesco Berrilli, and Oskar von der Lühe, "Zernike basis optimization for solar adaptive optics by using information theory," Appl. Opt. 49, 2090-2094 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-11-2090


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  2. F. Roddier, Adaptive Optics in Astronomy (Cambridge Univ. Press, 1999). [CrossRef]
  3. G. M. Dai, “Modal wave-front reconstruction with Zernike polynomials and Karhunen-Loève functions,” J. Opt. Soc. Am. A 13, 1218-1255 (1996). [CrossRef]
  4. P. K. Baheti and M. A. Neifeld, “Recognition using information-optimal adaptive feature-specific imaging,” J. Opt. Soc. Am. A 1055-1070 (2009). [CrossRef]
  5. A. Ashok, P. K. Baheti, and M. A. Neifeld, “Compressive imaging system design using task-specific information,” Appl. Opt. 47, 4457-4471 (2008). [CrossRef] [PubMed]
  6. C. E. Shannon, “A Mathematical Theory of Communication,” Bell Syst. Tech. J. 27, 379-423, 623-656 (1948).
  7. A. I. Khinchin, Mathematical Foundations of Information Theory (Dover, 1957).
  8. S. Haykin, Communication Systems (Wiley, 2000).
  9. O. von der Lühe, D. Soltau, T. Berkefeld, and T. Schelenz, “KAOS: adaptive optics system for the Vacuum Tower Telescope at Teide Observatory,” Proc. SPIE 4853, 187-193(2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited