OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 11 — Apr. 10, 2010
  • pp: 2198–2203

Musical instrument recordings made with a fiber Fabry–Perot cavity: photonic guitar pickup

Nicholas Ballard, Daniel Paz-Soldan, Peter Kung, and Hans-Peter Loock  »View Author Affiliations


Applied Optics, Vol. 49, Issue 11, pp. 2198-2203 (2010)
http://dx.doi.org/10.1364/AO.49.002198


View Full Text Article

Enhanced HTML    Acrobat PDF (760 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A 1 cm long, low-finesse fiber-optic cavity was used as a transducer for the vibrations of the soundboard of an acoustic guitar and of a violin. The reflected light is detected and then amplified and recorded using conventional audio instrumentation. The fiber-optic pickup is found to have a high response range in both amplitude (up to 100 μm displacement) and audio frequency (DC to 20 kHz ) and good linearity up to a displacement of 225 μm . The audio noise is found to arise from the fiber-optic cables and, to a lesser extent, from the laser and laser driver.

© 2010 Optical Society of America

OCIS Codes
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(230.1040) Optical devices : Acousto-optical devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 21, 2010
Revised Manuscript: March 4, 2010
Manuscript Accepted: March 8, 2010
Published: April 7, 2010

Citation
Nicholas Ballard, Daniel Paz-Soldan, Peter Kung, and Hans-Peter Loock, "Musical instrument recordings made with a fiber Fabry-Perot cavity: photonic guitar pickup," Appl. Opt. 49, 2198-2203 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-11-2198


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. P. Loock, W. S. Hopkins, C. Morris-Blair, R. Resendes, J. Saari, and N. R. Trefiak, “Recording the sound of musical instruments with FBGs: the photonic pickup,” Appl. Opt. 48, 2735-2741 (2009). [CrossRef] [PubMed]
  2. B. Sorazu, G. Thursby, B. Culshaw, F. Dong, S. G. Pierce, Y. Yang, and D. Betz, “Optical generation and detection of ultrasound,” Strain 39, 111-114 (2003). [CrossRef]
  3. M. W. Hathaway, N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Combined ultrasound and temperature sensor using a fibre Brag grating,” Opt. Commun. 171, 225-231 (1999). [CrossRef]
  4. N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050-1054 (1997). [CrossRef]
  5. N. Takahashi, K. Tetsumura, and S. Takahashi, “Underwater acoustic sensor using optical fiber Bragg grating as detecting element,” Jpn. J. Appl. Phys. 38, 1 (1999). [CrossRef]
  6. N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38, 581-585 (2000). [CrossRef] [PubMed]
  7. N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691-694(1997). [CrossRef]
  8. Q. X. Yang, J. Barnes, H. P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276, 97-106(2007). [CrossRef]
  9. Q. X. Yang, H. P. Loock, I. Kozin, and D. Pedersen, “Fiber Bragg grating photoacoustic detector for liquid chromatography,” Analyst (Amsterdam) 133, 1567-1572 (2008).
  10. G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A Pure Appl. Opt. 8, S507-S513 (2006). [CrossRef]
  11. G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation,” Opt. Express 13, 2377-2384 (2005). [CrossRef] [PubMed]
  12. B. Lissak, A. Arie, and M. Tur, “Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings,” Opt. Lett. 23, 1930-1932 (1998). [CrossRef]
  13. J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. M. Littler, “Demonstration of a passive subpicostrain fiber strain sensor,” Opt. Lett. 30, 1923-1925 (2005). [CrossRef] [PubMed]
  14. http://www.chem.queensu.ca/people/faculty/loock/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MP3 (788 KB)     
» Media 2: MP3 (610 KB)     
» Media 3: MP3 (409 KB)     
» Media 4: MP3 (229 KB)     
» Media 5: MP3 (31 KB)     
» Media 6: MP3 (632 KB)     
» Media 7: MP3 (1154 KB)     
» Media 8: MP3 (411 KB)     
» Media 9: MP3 (421 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited