OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 11 — Apr. 10, 2010
  • pp: 2204–2214

Application of laser photofragmentation-resonance enhanced multiphoton ionization to ion mobility spectrometry

Jeffrey M. Headrick, Thomas A. Reichardt, Thomas B. Settersten, Ray P. Bambha, and Dahv A. V. Kliner  »View Author Affiliations


Applied Optics, Vol. 49, Issue 11, pp. 2204-2214 (2010)
http://dx.doi.org/10.1364/AO.49.002204


View Full Text Article

Enhanced HTML    Acrobat PDF (920 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate detection of nitro-containing compounds with laser photofragmentation (PF) coupled with resonance enhanced multiphoton ionization (REMPI) and ion mobility spectrometry (IMS). In PF-REMPI, a laser dissociates the parent molecules, producing fragments that can then be ionized by absorption of additional laser photons. The production of these ions strongly depends on the wavelength of laser light, with ion yields corresponding to the absorption spectrum of the fragments [nitric oxide (NO) in the present case]. Combining IMS with PF-REMPI provides further specificity, separating ions according to their mobilities through an atmospheric-pressure drift tube. In this work, we use a pulsed UV laser to examine the characteristics of atmospheric-pressure PF-REMPI, the chemistry occurring in the ionization region and drift tube, and the viability of detecting ions created by both resonance-enhanced and nonresonant ionization. Probing NO in a helium–nitrogen bath, we demonstrate that the detection of ions displays single-shot response to changes in ion generation, with an ion extraction-to-collection efficiency of 12 % . We then evaluate the sensitivity and specificity of PF-REMPI/IMS as applied to the detection of both the explosive surrogate 2, 4-dinitrotoluene and the nuisance compound nitrobenzene.

© 2010 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6410) Spectroscopy : Spectroscopy, multiphoton

ToC Category:
Spectroscopy

History
Original Manuscript: December 16, 2009
Revised Manuscript: March 10, 2010
Manuscript Accepted: March 10, 2010
Published: April 8, 2010

Citation
Jeffrey M. Headrick, Thomas A. Reichardt, Thomas B. Settersten, Ray P. Bambha, and Dahv A. V. Kliner, "Application of laser photofragmentation-resonance enhanced multiphoton ionization to ion mobility spectrometry," Appl. Opt. 49, 2204-2214 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-11-2204


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Eiceman and Z. Karpas, Ion Mobility Spectrometry, 2nd ed. (Taylor & Francis Group, 2005).
  2. J. Xu, W. B. Whitten, and J. M. Ramsey, “Space charge effects on resolution in a miniature ion mobility spectrometer,” Anal. Chem. 72, 5787-5791 (2000). [CrossRef]
  3. J. Xu, W. B. Whitten, and J. M. Ramsey, “Pulsed-ionization miniature ion mobility spectrometer,” Anal. Chem. 75, 4206-4210 (2003). [CrossRef]
  4. K. B. Pfeifer and A. N. Rumpf, “Measurement of ion swarm distribution functions in miniature low-temperature co-fired ceramic ion mobility spectrometer drift tubes,” Anal. Chem. 77, 5215-5220 (2005). [CrossRef]
  5. J. I. Baumbach and G. A. Eiceman, “Ion mobility spectrometry: arriving on site and moving beyond a low profile,” Appl. Spectrosc. 53, 338A-355A (1999). [CrossRef]
  6. S. H. Kim, K. R. Betty, and F. W. Karasek, “Mobility behavior and composition of hydrated positive reactant ions in plasma chromatography with nitrogen carrier gas,” Anal. Chem. 50, 2006-2012 (1978). [CrossRef]
  7. M. Tabrizchi, T. Khayamian, and N. Taj, “Design and optimization of a corona discharge ionization source for ion mobility spectrometry,” Rev. Sci. Instrum. 71, 2321-2328 (2000). [CrossRef]
  8. M. Tabrizchi and A. Abedi, “A novel electron source for negative ion mobility spectrometry,” Int. J. Mass Spectrom. 218, 75-85 (2002). [CrossRef]
  9. C. A. Hill and C. L. P. Thomas, “A pulsed corona discharge switchable high resolution ion mobility spectrometer-mass spectrometer,” Analyst (Amsterdam) 128, 55-60 (2003). [CrossRef]
  10. C. M. Klimcak and J. E. Wessel, “Gas chromatography with detection by laser excited resonance enhanced 2-photon photoionization,” Anal. Chem. 52, 1233-1239 (1980). [CrossRef]
  11. D. M. Lubman and M. N. Kronick, “Plasma chromatography with laser-produced ions,” Anal. Chem. 54, 1546-1551 (1982). [CrossRef]
  12. D. M. Lubman and M. N. Kronick, “Resonance-enhanced two-photon ionization spectroscopy in plasma chromatography,” Anal. Chem. 55, 1486-1492 (1983). [CrossRef]
  13. D. M. Lubman and M. N. Kronick, “Multiwavelength-selective ionization of organic compounds in an ion mobility spectrometer,” Anal. Chem. 55, 867-873 (1983). [CrossRef]
  14. D. M. Lubman, “Temperature dependence of plasma chromatography of aromatic hydrocarbons,” Anal. Chem. 56, 1298-1302 (1984). [CrossRef]
  15. L. Kolaitis and D. M. Lubman, “Atmospheric pressure ionization mass spectrometry with laser-produced ions,” Anal. Chem. 58, 1993-2001 (1986). [CrossRef]
  16. A. Clark, R. M. Deas, C. Kosmidis, K. W. D. Ledingham, A. Marshall, and R. P. Singhal, “Explosives vapour identification in ion mobility spectrometry using a tunable laser ionization source: A comparison with conventional Ni63 ionization,” in Proceedings of the 6th International Symposium on Advanced Nuclear Energy Research (Japan Atomic Energy Research Institute, 1995), pp. 521-529.
  17. A. Clark, R. M. Deas, C. Kosmidis, K. W. D. Ledingham, A. Marshall, and R. P. Singhal, “The detection of energetic materials with a laser ionization ion mobility spectrometer,” Resonance Ionization Spectroscopy 1994--Seventh International Symposium, Vol. 329, 259-263 (1995).
  18. A. Langmeier, W. Heep, C. Oberhuettinger, H. Oberpriller, M. Kessler, J. Goebel, and G. Mueller, “Detection and classification of explosive compounds utilizing laser ion mobility spectrometry,” Proc. SPIE 7304, 73041H (2009). [CrossRef]
  19. J. Zhu, D. Lustig, I. Sofer, and D. M. Lubman, “Selective laser-induced resonant two-photon ionization and fragmentation of substituted nitrobenzenes at atmospheric-pressure,” Anal. Chem. 62, 2225-2232 (1990). [CrossRef]
  20. A. Clark, K. W. D. Ledingham, A. Marshall, and R. P. Singhal, “Resonant ionization spectroscopy of carbon atoms following laser-induced fragmentation of nitroaromatic molecules,” Spectrochim. Acta Part B 47, 799-808 (1992). [CrossRef]
  21. A. Marshall, A. Clark, R. Jennings, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser-induced dissociation, ionization and fragmentation processes in nitroaromatic molecules,” Int. J. Mass Spectrom. Ion Processes 116, 143-156 (1992). [CrossRef]
  22. A. Marshall, A. Clark, R. Jennings, K. W. D. Ledingham, and R. P. Singhal, “Wavelength-dependent laser-induced fragmentation of nitrobenzene,” Int. J. Mass Spectrom. Ion Processes 112, 273-283 (1992). [CrossRef]
  23. A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, and R. P. Singhal, “Attomole detection of nitroaromatic vapours using resonance enhanced multiphoton ionization mass spectrometry,” Analyst (Amsterdam) 118, 601-607 (1993).
  24. D. B. Galloway, J. A. Bartz, L. G. Huey, and F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 98, 2107-2114 (1993). [CrossRef]
  25. G. W. Lemire, J. B. Simeonsson, and R. C. Sausa, “Laser-based sensitive detection of energetic materials,” Mat. Res. Soc. Symp. Proc. 296, 373-378 (1993).
  26. G. W. Lemire, J. B. Simeonsson, and R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226-nm radiation: Fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529-533 (1993). [CrossRef]
  27. J. B. Simeonsson, G. W. Lemire, and R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907-1912(1993). [CrossRef]
  28. C. Kosmidis, K. W. D. Ledingham, A. Clark, A. Marshall, R. Jennings, J. Sander, and R. P. Singhal, “On the dissociation pathways of nitrobenzene,” Int. J. Mass Spectrom. Ion Processes 135, 229-242 (1994). [CrossRef]
  29. C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser light,” Rapid Commun. Mass Spectrom. 8, 607-614 (1994). [CrossRef]
  30. A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, and R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8, 521-526 (1994). [CrossRef]
  31. K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522-1527 (1995). [CrossRef]
  32. H.-S. Im and E. R. Bernstein, “On the initial steps in the decomposition of energetic materials from excited electronic states,” J. Chem. Phys. 113, 7911-7918 (2000). [CrossRef]
  33. Y. Q. Guo, M. Greenfield, and E. R. Bernstein, “Decomposition of nitramine energetic materials in excited electronic states: RDX and HMX,” J. Chem. Phys. 122, 244310 (2005). [CrossRef]
  34. M. Greenfield, Y. Q. Guo, and E. R. Bernstein, “Ultrafast photodissociation dynamics of HMX and RDX from their excited electronic states via femtosecond laser pump-probe techniques,” Chem. Phys. Lett. 430, 277-281 (2006). [CrossRef]
  35. C. McEnnis, Y. Dikmelik, T. J. Comish, M. D. Antoine, P. A. Demirev, and J. B. Spicer, “Investigation of the fragmentation of explosives by femtosecond laser mass spectrometry,” Proc. SPIE 6217, 621729 (2006). [CrossRef]
  36. V. Swayambunathan, G. Singh, and R. C. Sausa, “Laser photofragmentation-fragment detection and pyrolysis-laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447-6454 (1999). [CrossRef]
  37. J. Cabalo and R. Sausa, “Detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by laser surface photofragmentation-fragment detection spectroscopy,” Appl. Spectrosc. 57, 1196-1199 (2003). [CrossRef]
  38. J. Cabalo and R. Sausa, “Trace detection of explosives with low vapor emissions by laser surface photofragmentation-fragment detection spectroscopy with an improved ionization probe,” Appl. Opt. 44, 1084-1091 (2005). [CrossRef]
  39. L. M. Matz, P. S. Tornatore, and H. H. Hill, “Evaluation of suspected interferents for TNT detection by ion mobility spectrometry,” Talanta 54, 171-179 (2001). [CrossRef]
  40. D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210, 393-398 (2002). [CrossRef]
  41. J. Wormhoudt, J. H. Shorter, C. C. Cook, and J. J. Zayhowski, “Diode-pumped 214.8-nm Nd:YAG/Cr4+:YAG microchip laser system for the detection of NO,” Appl. Opt. 39, 4418-4424(2000). [CrossRef]
  42. A. A. Hoops and T. A. Reichardt, “Impact of collisional quenching on the detection of HgCl2 via photofragment emission,” Appl. Opt. 48, B32-B42 (2009). [CrossRef]
  43. R. Engleman, Jr., P. E. Rouse, H. M. Peek, and V. D. Baiamonte, “The beta and gamma systems of nitric oxide,” LA-4364 (Los Alamos Scientific Laboratory, 1970).
  44. R. Engleman, Jr., and P. E. Rouse, “The β and γ bands of nitric oxide observed during flash photolysis of nitrosyl chloride,” J. Mol. Spectrosc. 37, 240-251 (1971). [CrossRef]
  45. W. G. Bessler, C. Schulz, V. Sick, and J. W. Daily, “A versatile modeling tool for nitric oxide LIF spectra,” in Proceedings of the Third Joint Meeting of the U.S. Sections of The Combustion Institute (The Combustion Institute, 2003), paper PI05, http://www.lifsim.com.
  46. H. Zacharias, F. de Rougemont, T. F. Heinz, and M. M. T. Loy, “Ionization probabilities of AΣ2+(v′=0,1,2) and BΠ2(v′=0,2) states of NO,” J. Chem. Phys. 105, 111-117 (1996). [CrossRef]
  47. J. W. Daily, W. G. Bessler, C. Schulz, V. Sick, and T. B. Settersten, “Nonstationary collisional dynamics in determining nitric oxide laser-induced fluorescence spectra,” AIAA J. 43, 458-464 (2005). [CrossRef]
  48. J. Luque and D. R. Crosley, “LIFBASE: database and spectral simulation (version 1.5),” MP 99-009 (SRI International, 1999).
  49. D. C. Jacobs and R. N. Zare, “Reduction of 1+1 resonance enhanced MPI spectra to populations and alignment factors,” J. Chem. Phys. 85, 5457-5468 (1986). [CrossRef]
  50. D. C. Jacobs, R. J. Madix, and R. N. Zare, “Reduction of 1+1 resonance enhanced MPI spectra to population distributions: Application to the NO AΣ2+−XΠ2 system,” J. Chem. Phys. 85, 5469-5479 (1986). [CrossRef]
  51. Manual, “Dynacalibrator: model 230/340/450/500” (VICI Metronics, 2002).
  52. R. L. Pastel and R. C. Sausa, “Spectral differentiation of trace concentrations of NO2 from NO by laser photofragmentation with fragment ionization at 226 and 452 nm: quantitative analysis of NO─NO2 mixtures,” Appl. Opt. 39, 2487-2495(2000). [CrossRef]
  53. J. B. Simeonsson and R. C. Sausa, “Trace analysis of NO2 in the presence of NO by laser photofragmentation/fragment photoionization spectrometry at visible wavelengths,” Appl. Spectrosc. 50, 1277-1282 (1996). [CrossRef]
  54. V. Swayambunathan, R. C. Sausa, and G. Singh, “Investigations into trace detection of nitrocompounds by one- and two-color laser photofragmentation/fragment detection spectrometry,” Appl. Spectrosc. 54, 651-658 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited