OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 12 — Apr. 20, 2010
  • pp: 2250–2261

Sensitivity of Bragg gratings in birefringent optical fiber to transverse compression between conforming materials

Christopher R. Dennison and Peter M. Wild  »View Author Affiliations

Applied Optics, Vol. 49, Issue 12, pp. 2250-2261 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (951 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical and experimental investigation of the transverse load sensitivity of Bragg gratings in birefringent fibers to conforming contact is presented. A plane elasticity model is used to predict the contact dimensions between a conforming material and optical fiber and the principal stresses, indicating birefringence, created as a result of this contact. The transverse load sensitivity of commercially available birefringent fiber is experimentally measured for two cases of conforming contact. Theoretical and experimental results show that birefringent optical fiber can be used to make modulus-independent measurements of contact load. Therefore, Bragg gratings could be applied to conforming contact load measurements while avoiding some of the complications associated with existing contact sensors: specifically, the necessity to precalibrate by using materials with mechanical properties identical to those found in situ.

© 2010 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(260.1440) Physical optics : Birefringence
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Optical Devices

Original Manuscript: January 4, 2010
Revised Manuscript: March 17, 2010
Manuscript Accepted: March 21, 2010
Published: April 13, 2010

Christopher R. Dennison and Peter M. Wild, "Sensitivity of Bragg gratings in birefringent optical fiber to transverse compression between conforming materials," Appl. Opt. 49, 2250-2261 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Chehura, C.-C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fiber Bragg gratings fabricated in stress and geometrically induced high birefringence fibers to temperature and transverse load,” Smart Mater. Struct. 13, 888-895 (2004). [CrossRef]
  2. K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17, 2123-2129 (1981). [CrossRef]
  3. R. M. Measures, Structural Health Monitoring with Fiber Optic Technology (Academic , 2001).
  4. E. Udd, D. Nelson, and C. Lawrence, “Three axis strain and temperature fiber optic grating sensor,” Proc. SPIE 2718, 104-109 (1996). [CrossRef]
  5. P. Wierzba and B. B. Kosmowski, “Application of polarisation-maintaining side-hole fibres to direct force measurement,” Opto-Electron. Rev. 11, 305-312 (2003).
  6. I. Abe, O. Frazao, M. W. Schiller, R. N. Noqueira, H. J. Kalinowski, and J. L. Pinto, “Bragg gratings in normal and reduced diameter high birefringence fibre optics,” Meas. Sci. Technol. 17, 1477-1484 (2006). [CrossRef]
  7. K. L. Johnson, Contact Mechanics (Cambridge U. Press, 1987).
  8. M. Ferguson-Pell and M. Cardi, “Prototype development and comparative evaluation of wheelchair pressure mapping system,” Assist. Technol. 5(2), 78-91 (1993). [CrossRef]
  9. E. R. Komi, J. R. Roberts, and S. J. Rothberg, “Measurement and analysis of grip force during a golf shot,” Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 222, 23-35 (2008).
  10. K. Yokoyama, M. Okazaki, and T. Komito, “Effect of contact pressure and thermal degradation on the sealibility of O-ring,” JSAE Rev. 19, 123-128 (1998). [CrossRef]
  11. P. Niemczyk, K. Cummings, A. Sarvazyan, E. Bancila, W. Ward, and R. Weiss, “Correlation of mechanical imaging and histopathology of radical prostatectomy specimens: a pilot study for detecting prostate cancer,” J. Urol. (Baltimore) 160, 797-801 (1998). [CrossRef]
  12. S. Ferguson, J. Bryant, R. Ganz, and K. Ito, “The acetabular labrum seal: a poroelastic finite element model,” Clin. Biomech. (Bristol, Avon) 15, 463-468 (2000). [CrossRef]
  13. M. K. Barker and B. B. Seedhom, “The relationship of the compressive modulus of articular cartilage: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime?” Rheumatology 40, 274-284 (2001). [CrossRef] [PubMed]
  14. J. Z. Wu, W. Herzog, and M. Epstein, “Effects of inserting a Pressensor film into articular joints on the actual contact mechanics,” J. Biomech. Eng. 120, 655-659 (1998). [CrossRef]
  15. M. Ciavarella and P. Decuzzi, “The state of stress induced by the plane frictionless cylindrical contact. I. The case of elastic similarity,” Int. J. Solids Struct. 38, 4507-4523 (2001). [CrossRef]
  16. M. Ciavarella and P. Decuzzi, “The state of stress induced by plane frictionless cylindrical contact. II. The general case (elastic dissimilarity),” Int. J. Solids Struct. 38, 4525-4533(2001). [CrossRef]
  17. G. Hondros, “The evaluation of Poisson's ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete,” Aust. J. Appl. Sci. 10, 243-268 (1959).
  18. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647-649 (1978). [CrossRef]
  19. S. Huang, M. LeBlanc, M. M. Ohn, and R. M. Measures, “Bragg intragrating structural sensing,” Appl. Opt. 34, 5003-5009 (1995). [CrossRef] [PubMed]
  20. A. J. Barlow and D. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. 19, 834-839 (1983). [CrossRef]
  21. G. Chen, L. Liu, H. Jia, J. Yu, L. Xu, and W. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photonics Technol. Lett. 16, 221-223 (2004). [CrossRef]
  22. B. P. Pal, Fundamentals of Fibre Optics in Telecommunication and Sensor Systems (New Age International, 1992).
  23. S. L. A. Carrara, B. Y. Kim, and H. J. Shaw, “Elasto-optic alignment of birefringent axes in polarization-holding fiber,” Opt. Lett. 11, 470-472 (1986). [CrossRef] [PubMed]
  24. F. Bingjun, S. Wang, and L. Zhonkui, Frontiers of Rock Mechanics and Sustainable Development in the 21st Century (Swets and Zeitlinger, 2001).
  25. S.-K. Han, S. Federico, M. Epstein, and W. Herzog, “An articular cartilage contact model based on real surface geometry,” J. Biomech. 38, 179-184 (2005). [CrossRef]
  26. D. P. Elastomers, “Viton fluoroelastomer: technical information,” (2003).
  27. C.-C. Ye, S. E. Staines, S. W. James, and R. P. Tatum, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol. 13, 1446-1449 (2002). [CrossRef]
  28. W. A. Hodge, R. S. Fuan, K. L. Carlson, R. G. Burgess, W. H. Harris, and R. W. Mann, “Contact pressures in the human hip joint measured in vivo,” Proc. Natl. Acad. Sci. USA 83, 2789-2883 (1986). [CrossRef]
  29. M. M. Krishna, M. S. Shunmugam, and N. S. Prasad, “A study on the sealing performance of bolted flange joints with gaskets using finite element analysis,” Int. J. Pressure Vessels Piping 84, 349-357 (2007). [CrossRef]
  30. ANDO Electric Co. Ltd., Instruction Manual, ANDO AQ6331 Optical Spectrum Analyzer, (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited