OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 12 — Apr. 20, 2010
  • pp: 2316–2325

Effect of laser linewidth and fiber length on self-pulsing dynamics and output stabilization of single-mode Yb-doped double-clad fiber laser

Brahma N. Upadhyaya, Antony Kuruvilla, Usha Chakravarty, Mangalpady R. Shenoy, Krishna Thyagarajan, and Shrikant M. Oak  »View Author Affiliations


Applied Optics, Vol. 49, Issue 12, pp. 2316-2325 (2010)
http://dx.doi.org/10.1364/AO.49.002316


View Full Text Article

Enhanced HTML    Acrobat PDF (1454 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an experimental study of the effect of fiber length and laser linewidth on self-pulsing dynamics and output stabilization of a single-mode Yb-doped double-clad CW fiber laser. It is found that initiation of self-pulsing under low-level pumping conditions is due to relaxation oscillations and saturable absorption in the weakly pumped region of the doped fiber, irrespective of the fiber length and the laser linewidth. However, with an increase in pump power, depending on fiber length and laser linewidth, the pulses initiated due to relaxation oscillation get amplified, and result in short-duration giant pulses due to either stimulated Brillouin scattering (SBS) or stimulated Raman scattering (SRS). In the case of fiber lasers that employ a broadband mirror and wherein the fiber length is sufficient to reach the SRS threshold, the giant self-pulses are generated by SRS, whereas in the case of fiber lasers using a fiber Bragg grating, characterized by narrowband reflection and with sufficient fiber length to reach the SBS threshold, the giant self-pulses are generated by SBS. Output stabilization and, hence, elimination of self-pulsations can be achieved either by suppressing the relaxation oscillations with the addition of an appropriate length of a passive fiber to sufficiently increase the cavity photon lifetime, or by increasing the pump power to achieve gain uniformity along the doped fiber such that relaxation oscillations and reabsorption effects are suppressed.

© 2010 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 4, 2010
Revised Manuscript: March 22, 2010
Manuscript Accepted: March 22, 2010
Published: April 14, 2010

Citation
Brahma N. Upadhyaya, Antony Kuruvilla, Usha Chakravarty, Mangalpady R. Shenoy, Krishna Thyagarajan, and Shrikant M. Oak, "Effect of laser linewidth and fiber length on self-pulsing dynamics and output stabilization of single-mode Yb-doped double-clad fiber laser," Appl. Opt. 49, 2316-2325 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-12-2316

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited