OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 12 — Apr. 20, 2010
  • pp: 2326–2333

Design and optimization of partial Mueller matrix polarimeters

J. Scott Tyo, Zhipeng Wang, Sergio J. Johnson, and Brian G. Hoover  »View Author Affiliations


Applied Optics, Vol. 49, Issue 12, pp. 2326-2333 (2010)
http://dx.doi.org/10.1364/AO.49.002326


View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mueller matrix polarimeters (MMPs) are designed to probe the polarization properties of optical scattering processes. When using a MMP for a detection, discrimination, classification, or identification task, a user considers certain elements of the Mueller matrix. The usual way of performing this task is to measure the full Mueller matrix and discard the unused elements. For polarimeter designs with speed, miniaturization, or other constraints, it may be desirable to have a system with reduced dimensionality that measures only elements of the Mueller matrix that are important in a particular application as efficiently as possible. In this paper, we develop a framework that allows partial MMPs to be analyzed. Quantitative metrics are developed by considering geometrical relationships between the space spanned by a particular MMP and the space occupied by the scene components. The method is generalized to allow the effects of noise to be considered. The results are general and can also be used to optimize complete and overspecified MMPs for performing specific tasks, as well.

© 2010 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(290.0290) Scattering : Scattering

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: September 3, 2009
Revised Manuscript: January 28, 2010
Manuscript Accepted: January 29, 2010
Published: April 14, 2010

Citation
J. Scott Tyo, Zhipeng Wang, Sergio J. Johnson, and Brian G. Hoover, "Design and optimization of partial Mueller matrix polarimeters," Appl. Opt. 49, 2326-2333 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-12-2326


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Tyo, D. H. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.  45, 5453–5469 (2006). [CrossRef] [PubMed]
  2. J.-S. Lee and E. Pottier, Polarimetric Radar Imaging: From Basics to Applications (CRC, 2009). [CrossRef]
  3. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  4. K. Sassen, “Polarization in lidar: a review,” Proc. SPIE  5158, 151–160 (2003). [CrossRef]
  5. N. A. Beaudry, Y. Zhao, and R. A. Chipman, “Dielectric tensor measurement from a single Mueller matrix image,” J. Opt. Soc. Am. A  24, 814–824 (2007). [CrossRef]
  6. I. J. Vaughn and B. G. Hoover, “Noise reduction in a laser polarimeter based on discrete waveplate rotations,” Opt. Express  16, 2091–2108 (2008). [CrossRef] [PubMed]
  7. J. M. Bueno and P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett.  24, 64–66 (1999). [CrossRef]
  8. R. Park, K. Twietmeyer, R. Chipman, N. Beaudry, and D. Salyer, “Wavelength dependence of the apparent diameter of retinal blood vessels,” Appl. Opt.  44, 1831–1837(2005). [CrossRef] [PubMed]
  9. D. Lara and C. Dainty, “Axially resolved complete Mueller matrix confocal microscopy,” Appl. Opt.  45, 1917–1930(2006). [CrossRef] [PubMed]
  10. R. A. Chipman, “Polarimetry,” in “Handbook of Optics,” M.Bass, ed. (McGraw-Hill, 1995), Vol.  2, Chap. 22.
  11. M. H. Smith, “Optimization of a dual-rotating-retarder Mueller matrix polarimeter,” Appl. Opt.  41, 2488–2495(2002). [CrossRef] [PubMed]
  12. S. N. Savenkov, “Optimization and structuring of the instrument matrix for polarimetric measurements,” Opt. Eng.  41, 965–972 (2002). [CrossRef]
  13. A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drèvillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett.  28, 616–618 (2003). [CrossRef] [PubMed]
  14. K. Twietmeyer and R. A. Chipman, “Optimization of Mueller polarimeters in the presence of error sources,” Opt. Express  16, 11589–11603 (2008). [CrossRef] [PubMed]
  15. D. G. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” J. Opt. Soc. Am. A  11, 2305–2319 (1994). [CrossRef]
  16. B. G. Hoover and J. S. Tyo, “Polarization components analysis for invariant discrimination,” Appl. Opt.  46, 8364–8373(2007). [CrossRef] [PubMed]
  17. D. G. Jones, D. H. Goldstein, and J. C. Spaulding, “Reflective and polarimetric characteristics of urban materials,” Proc. SPIE  6240, 62400A (2006). [CrossRef]
  18. F. Goudail, “Comparative study of the best achievable contrast in scalar, Stokes and Mueller images,” in First NanoCharm Workshop on Advanced Polarimetric Instrumentation (Multifunctional Nanomaterials Characterization Exploiting EllipsoMetry and Polarimetry (NanoCharM), 2009).
  19. J. S. Tyo, Z. Wang, S. J. Johnson, and B. G. Hoover, “Designing partial Mueller matrix polarimeters,” Proc. SPIE  7461, 74610V (2009). [CrossRef]
  20. A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part I,” Opt. Eng.  34, 1651–1655 (1995). [CrossRef]
  21. A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part II,” Opt. Eng.  34, 1656–1659 (1995). [CrossRef]
  22. R. M. A. Azzam, I. M. Elminyawi, and A. M. El-Saba, “General analysis and optimization of the four-detector photopolarimeter,” J. Opt. Soc. Am. A  5, 681–689 (1988). [CrossRef]
  23. J. S. Tyo, “Design of optimal polarimeters: maximization of SNR and minimization of systematic errors,” Appl. Opt.  41, 619–630 (2002). [CrossRef] [PubMed]
  24. J. S. Tyo, “Optimum linear combination strategy for a N-channel polarization sensitive vision or imaging system,” J. Opt. Soc. Am. A  15, 359–366 (1998). [CrossRef]
  25. R. Simon, “Mueller matrices and depolarization criteria,” J. Mod. Opt.  34, 569–575 (1987). [CrossRef]
  26. R. Barakat, “Bilinear constraints between elements of the 4×4 Mueller-Jones transfer matrix of polarization theory,” Opt. Commun.  38, 159–161 (1981). [CrossRef]
  27. J. J. Gil, “Characteristic properties of Mueller matrices,” J. Opt. Soc. Am. A  17, 328–334 (2000). [CrossRef]
  28. J. J. Gil and E. Bernabeu, “A depolarization criterion in Mueller matrices,” Opt. Acta  32, 259–261 (1985). [CrossRef]
  29. B. J. DeBoo, J. M. Sasian, and R. A. Chipman, “Degree of polarization surfaces and maps for analysis of depolarization,” Opt. Express  12, 4941–4958 (2004). [CrossRef] [PubMed]
  30. S. R. Cloude, “Group theory and polarization algebra,” Optik (Stuttgart)  75, 26–36 (1986).
  31. R. A. Chipman, “Metrics for depolarization,” Proc. SPIE  5888, 58880L (2005). [CrossRef]
  32. R. A. Chipman, “Degrees of freedom in depolarizing Mueller matrices,” Proc. SPIE  6682, 66820I (2007). [CrossRef]
  33. R. Espinosa-Luna, E. Bernabeu, and G. Atondo-Rubio, “Q(M) and the depolarization index scalar metrics,” Appl. Opt.  47, 1575–1580 (2008). [CrossRef] [PubMed]
  34. I. Daubecheis, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, 1992), Chap. 3, pp. 53–106. [CrossRef]
  35. Z. Wang, J. S. Tyo, and M. M. Hayat, “Data interpretation for spectral sensors with correlated bands,” J. Opt. Soc. Am. A  24, 2864–2870 (2007). [CrossRef]
  36. Z. Wang, J. S. Tyo, and M. M. Hayat, “Generalized SNR for sensors with highly correlated bands,” J. Opt. Soc. Am. A  25, 2528–2534 (2008). [CrossRef]
  37. H. Hotelling, “Relations between two sets of variates,” Biometrika  28, 312–377 (1936).
  38. In some cases it might be advantageous to generate or analyze partially polarized states. However, the difficulty of doing this in an active system will preclude its use except in specialized situations. The obvious exception to this is the generation or analysis of an unpolarized state. The term m00 can be measured with a single measurement when both generator and analyzer are unpolarized. The elements of the first row m0j can be measured in two measurements by analyzing an unpolarized state. The elements of the first column mi0 can be obtained in two measurements by generating an unpolarized state.
  39. G. H. Golub and C. F. van Loan, Matrix Computations (Johns Hopkins U. Press, 1983), Chap. 2, pp. 11–29.
  40. S. J. Johnson, “Use of partial polarimetry in material discrimination,” Master’s thesis (University of Arizona, Tucson, 2009).
  41. D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeters,” Proc. SPIE  4133, 75–81 (2000). [CrossRef]
  42. J. S. Tyo, “Noise equalization in Stokes parameter images obtained by use of variable retardance polarimeters,” Opt. Lett.  25, 1198–2000 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited