OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 12 — Apr. 20, 2010
  • pp: 2347–2351

Second-harmonic generation from metal-film nanohole arrays

Hua Lu, Xueming Liu, Renlong Zhou, Yongkang Gong, and Dong Mao  »View Author Affiliations


Applied Optics, Vol. 49, Issue 12, pp. 2347-2351 (2010)
http://dx.doi.org/10.1364/AO.49.002347


View Full Text Article

Enhanced HTML    Acrobat PDF (552 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The roles of surface plasmon resonance and localized resonances in second-harmonic generation are investigated in a noncentrosymmetrical metallic film with a periodic subwavelength nanohole array. By using a recently developed microscopic classical theory and a three-dimensional finite-difference time-domain algorithm, numerical results show that the second-harmonic intensity is a function of the polarization and wavelength of incident waves. A peak of the second-harmonic intensity is achieved when the incident wave is along the direction perpendicular to the x-axis of nanoholes, which corresponds to the maximal extraordinary optical transmission. Meanwhile, the second harmonic is found to correlate with the group delay of incident waves.

© 2010 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance

ToC Category:
Physical Optics

History
Original Manuscript: January 11, 2010
Manuscript Accepted: March 22, 2010
Published: April 14, 2010

Citation
Hua Lu, Xueming Liu, Renlong Zhou, Yongkang Gong, and Dong Mao, "Second-harmonic generation from metal-film nanohole arrays," Appl. Opt. 49, 2347-2351 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-12-2347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature  391, 667–669 (1998). [CrossRef]
  2. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.  66, 163–182 (1944). [CrossRef]
  3. F. I. Baida, D. V. Labeke, and B. Guizal, “Enhanced confined light transmission by single subwavelength apertures in metallic films,” Appl. Opt.  42, 6811–6815 (2003). [CrossRef] [PubMed]
  4. E. Popov, M. Nevière, A. L. Fehrembach, and N. Bonod, “Enhanced transmission of light through a circularly structured aperture,” Appl. Opt.  44, 6898–6904 (2005). [CrossRef] [PubMed]
  5. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett.  86, 1110–1113 (2001). [CrossRef] [PubMed]
  6. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science  305, 847–848 (2004). [CrossRef] [PubMed]
  7. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.  96, 233901 (2006). [CrossRef] [PubMed]
  8. C. P. Huang, Q. J. Wang, and Y. Y. Zhu, “Dual effect of surface plasmons in light transmission through perforated metal films,” Phys. Rev. B  75, 245421 (2007). [CrossRef]
  9. F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett.  95, 067403 (2005). [CrossRef]
  10. A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett.  88, 261104 (2006). [CrossRef]
  11. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express  13, 1933–1938 (2005). [CrossRef] [PubMed]
  12. Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B  79, 235109 (2009). [CrossRef]
  13. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett.  33, 1975–1977 (2008). [CrossRef] [PubMed]
  14. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett.  97, 146102 (2006). [CrossRef] [PubMed]
  15. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.  90, 013903 (2003). [CrossRef] [PubMed]
  16. C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett.  90, 181105 (2007). [CrossRef]
  17. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett.  28, 423–425 (2003). [CrossRef] [PubMed]
  18. M. Airola, Y. Liu, and S. Blair, “Second harmonic generation from an array of subwavelength metal apertures,” J. Opt. A: Pure Appl. Opt.  7, S118–S123 (2005). [CrossRef]
  19. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials:erratum,” Opt. Express  16, 8055 (2008). [CrossRef]
  20. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science  313, 502–504 (2006). [CrossRef] [PubMed]
  21. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett.  98, 167403 (2007). [CrossRef] [PubMed]
  22. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.  7, 1251–1255 (2007). [CrossRef] [PubMed]
  23. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B  71, 165407 (2005). [CrossRef]
  24. Y. Zeng and J. V. Moloney, “Volume electric dipole origin of second-harmonic generation from metallic membrane with non-centrosymmetry patterns,” Opt. Lett.  34, 2844–2846(2009). [CrossRef] [PubMed]
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  26. A. Wokaun, “Surface-enhanced electromagnetic processes,” in Solid State Physics, H.Ehrenreich, T.Thurnbull, and F.Seitz, eds. (Academic, 1984), Vol.  38, p. 223. [CrossRef]
  27. K. L. van der Molen, K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B  72, 045421 (2005). [CrossRef]
  28. J. Prangsma, “Local and dynamic properties of light interacting with subwavelength holes” (Ipskamp, 2009), http://www-old.amolf.nl/publications/theses/prangsma/chap3.pdf.
  29. M. R. Zavelani, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett.  92, 093119 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited