OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 12 — Apr. 20, 2010
  • pp: 2352–2362

Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform

Xianchao Wang, Junjie Peng, Mei Li, Zhangyi Shen, and Ouyang Shan  »View Author Affiliations


Applied Optics, Vol. 49, Issue 12, pp. 2352-2362 (2010)
http://dx.doi.org/10.1364/AO.49.002352


View Full Text Article

Enhanced HTML    Acrobat PDF (807 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Applying the parallelism of optical computing, we present a novel method of vector-matrix multiplication (VMM) based on a new optical computing platform, the ternary optical computer, which can reconfigure any two-input trivalued logic optical processor at runtime, according to the decrease-radix design principle. In this work, we investigate a novel optical VMM (OVMM) using five logic operations with the modified signed-digit (MSD) number system. To simplify the computation process, we realize a carry-free optical addition in three steps, which is independent of the length of the operands. And a new implementation method is proposed that can be used to realize the MSD multiplication in parallel. Based on the generation of partial products in parallel and the binary-addition-tree algorithm, the multiplication can be implemented with the MSD addition. Our initial experiments have been performed to verify the proposed OVMM method. The results show that the proposed method of OVMM is feasible and correct.

© 2010 Optical Society of America

OCIS Codes
(200.3760) Optics in computing : Logic-based optical processing
(200.4560) Optics in computing : Optical data processing
(200.4740) Optics in computing : Optical processing
(200.4860) Optics in computing : Optical vector-matrix systems
(200.4960) Optics in computing : Parallel processing

ToC Category:
Optics in Computing

History
Original Manuscript: November 2, 2009
Revised Manuscript: March 12, 2010
Manuscript Accepted: March 19, 2010
Published: April 14, 2010

Citation
Xianchao Wang, Junjie Peng, Mei Li, Zhangyi Shen, and Ouyang Shan, "Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform," Appl. Opt. 49, 2352-2362 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-12-2352


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Heinz, J. O. Artman, and S. H. Lee, “Matrix multiplication by optical methods,” Appl. Opt.  9, 2161–2168 (1970). [CrossRef] [PubMed]
  2. E. P. Mosca, R. D. Griffin, F. P. Pursel, and J. N. Lee, “Acoustooptical matrix-vector product processor: implementation issues,” Appl. Opt.  28, 3843–3851 (1989). [CrossRef] [PubMed]
  3. S. A. Ellett, J. F. Walkup, and T. F. Krile, “Error-correction coding for accuracy enhancement in optical matrix-vector multipliers,” Appl. Opt.  31, 5642–5653 (1992). [CrossRef] [PubMed]
  4. N. Q. Ngo and L. N. Binh, “Fiber-optic array algebraic processing architectures,” Appl. Opt.  34, 803–815 (1995). [CrossRef] [PubMed]
  5. A. P. Goutzoulis, “Systolic time-integrating acousto-optic binary processor,” Appl. Opt.  23, 4095–4099 (1984). [CrossRef] [PubMed]
  6. E. J. Baranoski and D. P. Casasent, “High-accuracy optical processors: a new performance comparison,” Appl. Opt.  28, 5351–5357 (1989). [CrossRef] [PubMed]
  7. J. W. Goodman, A. R. Dias, and L. M. Woody, “Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms,” Opt. Lett.  2, 1–3 (1978). [CrossRef] [PubMed]
  8. K. Al-Ghoneim and D. Casasent, “High-accuracy pipelined iterative-tree optical multiplication,” Appl. Opt.  33, 1517–1527 (1994). [CrossRef] [PubMed]
  9. C. K. Gary, “Matrix-vector multiplication using digital partitioning for more accurate optical computing,” Appl. Opt.  31, 6205–6211 (1992). [CrossRef] [PubMed]
  10. S. A. Ellett, T. F. Krile, and J. F. Walkup, “Throughput analysis of digital partitioning with error-correcting codes for optical matrix-vector processors,” Appl. Opt.  34, 6744–6751 (1995). [CrossRef] [PubMed]
  11. M. Li, H. C. He, and Y. Jin, “A new method for optical vector-matrix multiplier,” in Proceedings of 2009 International Conference on Electronic Computer Technology (Computer Society Press, 2009), pp. 191–194. [CrossRef]
  12. D. Casasent and B. K. Taylor, “Banded-matrix high-performance algorithm and architecture,” Appl. Opt.  24, 1476–1480 (1985). [CrossRef] [PubMed]
  13. R. P. Bocker, S. R. Clayton, and K. Bromley, “Electrooptical matrix multiplication using the twos complement arithmetic for improved accuracy,” Appl. Opt.  22, 2019–2021 (1983). [CrossRef] [PubMed]
  14. M. Hűbner and J. Becker, “Exploiting dynamic and partial reconfiguration for FPGAs-toolflow, architecture, and system integration,” in Proceedings of the 19th SBCCI Symposium on Integrated Circuits and Systems Design (ACM, 2006), pp. 1–4.
  15. R. Hymel, A. D. George, and H. LAM, “Evaluating partial reconfiguration for embedded FPGA applications,” in Proceedings of High-Performance Embedded Computing Workshop (HPEC’07) (IEEE, 2007), pp. 1–2.
  16. V. Aggarwal, A. D. George, and K. C. Slatton, “Reconfigurable computing with multiscale data fusion for remote sensing,” in Proceedings of the ACM/SIGDA 14th International Symposium on Field Programmable Gate Arrays (FPGA’06) (ACM, 2006), p. 235.
  17. E. El-ArabyI. Gonzalez, and T. El-Ghazawi, “Exploiting partial runtime reconfiguration for high-performance reconfigurable computing,” ACM Trans. Reconfig. Techn. Syst.  1, 1 (2009). [CrossRef]
  18. D. B. Thomas and W. Luk, “Multivariate Gaussian random number generation targeting reconfigurable hardware,” ACM Trans. Reconfig. Techn. Syst.  1, 1 (2008). [CrossRef]
  19. S.-L. L. Lu, P. Yiannacouras, T. Suh, R. Kassa, and M. Konow, “A desktop computer with a reconfigurable Pentium,” ACM Trans. Reconfig. Techn. Syst.  1, 1 (2008). [CrossRef]
  20. J. S. Beeckler and W. J. Gross, “Particle graphics on reconfigurable hardware,” ACM Trans. Reconfig. Techn. Syst.  1, 1 (2008). [CrossRef]
  21. A. Huang, Y. Tsunoda, J. W. Goodman, and S. Ishihara, “Optical computation using residue arithmetic,” Appl. Opt.  18, 149–162 (1979). [CrossRef] [PubMed]
  22. A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE Trans. Electron. Comp.  EC-10, 389–400 (1961). [CrossRef]
  23. R. A. Athale, “Highly redundant number representation for medium accuracy optical computing,” Appl. Opt.  25, 3122–3127 (1986). [CrossRef] [PubMed]
  24. A. K. Cherri and M. S. Alam, “Recoded and nonrecoded trinary signed-digit adders and multipliers with redundant-bit representations,” Appl. Opt.  37, 4405–4418(1998). [CrossRef]
  25. R. P. Bocker, B. L. Drake, M. E. Lasher, and T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt.  25, 2456–2457 (1986). [CrossRef] [PubMed]
  26. Y. Jin, H. C. He, and Y. T. Lű, “Ternary optical computer principle,” Sci. China Ser. F  46, 145–150 (2003). [CrossRef]
  27. Y. Jin, H. C. He, and Y. T. Lű, “Ternary optical computer architecture,” Phys. Scr.  59, 98–101 (2005). [CrossRef]
  28. Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE  7282, 72823I (2009). [CrossRef]
  29. J. Y. Yan, Y. Jin, and K. Z. Zuo, “Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer,” Sci. China Ser. F  51, 1415–1426 (2008). [CrossRef]
  30. J. E. Robertson, “A deterministic procedure for the design of carry-save adders and borrow-save subtractors,” University of Illinois, Urbana-Champaign, Department of Computer Science Report no. 235 (1967).
  31. H. Ling, “High speed binary adder,” IBM J. Res. Develop.  25, 156–166 (1981). [CrossRef]
  32. N. Takagi, H. Yasuura, and S. Yajima, “High-speed VLSI multiplication algorithm with a redundant binary addition tree,” IEEE Trans. Comput.  C-34, 789–796 (1985). [CrossRef]
  33. M. M. Mirsalehi and T. K. Gaylord, “Logical minimization of multilevel coded functions,” Appl. Opt.  25, 3078–3088 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited