OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 13 — May. 1, 2010
  • pp: 2422–2428

Calculation of Debye series expansion of light scattering

Jianqi Shen and Huarui Wang  »View Author Affiliations

Applied Optics, Vol. 49, Issue 13, pp. 2422-2428 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (931 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Debye series expansion (DSE) is of importance for understanding light scattering features and for testing the validity of geometric optics approach to light scattering. We recast the partial-wave reflection and transmission coefficients so that all the related complex functions can be calculated with stability in all necessary orders. Numerical tests are performed for both the full scattering intensities and the components in a wide range of particle sizes and refractive indices. The results are compared with those from Mie calculation and from MiePlot v4.1, showing that the algorithm is stable, reliable, and robust in a wide range of particle sizes and refractive indices. The developed algorithm may also apply to the DSE calculation of light scattering by multilayered spheres or cylinders.

© 2010 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory

ToC Category:

Original Manuscript: January 15, 2010
Revised Manuscript: February 24, 2010
Manuscript Accepted: March 26, 2010
Published: April 23, 2010

Jianqi Shen and Huarui Wang, "Calculation of Debye series expansion of light scattering," Appl. Opt. 49, 2422-2428 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Debye, “Das elektromagnetische Feld um einen Zylinder und die Theorie des Regenbogens,” Phys. Z.  9, 775–778 (1908).
  2. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig)  25, 377–445 (1908). [CrossRef]
  3. X. Han, H. Jiang, K. Ren, and G. Gréhan, “On rainbows of inhomogeneous spherical droplets,” Opt. Commun.  269, 291–298 (2007). [CrossRef]
  4. P. Laven, “The optics of a water drop: Mie scattering and the Debye series,” http://www.philiplaven.com/index1.html (2004).
  5. P. Laven, “Simulation of rainbows, coronas and glories using Mie theory and the Debye series,” J. Quant. Spectosc. Radiat. Transfer  89, 257–269 (2004). [CrossRef]
  6. P. Laven, “How are glories formed?,” Appl. Opt.  44, 5675–5683 (2005). [CrossRef] [PubMed]
  7. J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A  10, 693–706 (1993). [CrossRef]
  8. J. A. Lock, J. M. Jamison, and C. Lin, “Rainbow scattering by a coated sphere,” Appl. Opt.  33, 4677–4690 (1994). [CrossRef] [PubMed]
  9. J. A. Lock and C. L. Adler, “Debye series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A  14, 1316–1328 (1997). [CrossRef]
  10. J. A. Lock, “Cooperative effects among partial waves in Mie scattering,” J. Opt. Soc. Am. A  5, 2032–2044 (1988). [CrossRef]
  11. X. Li, X. Han, R. Li, and H. Jiang, “Geometrical-optics approximation of forward scattering by gradient-index spheres,” Appl. Opt.  46, 5241–5247 (2007). [CrossRef] [PubMed]
  12. L. Wu, H. Yang, X. Li, B. Yang, and G. Li, “Scattering by large bubbles: Comparisons between geometrical-optics theory and Debye series,” J. Quant. Spectrosc. Radiat. Transfer  108, 54–64 (2007). [CrossRef]
  13. F. Xu, K. Ren, and X. Cai, “Extension of geometrical optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt.  45, 4990–4999 (2006). [CrossRef] [PubMed]
  14. H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation for light scattering by absorbing spherical particles,” J. Quant. Spectosc. Radiat. Transfer  110, 1178–1189 (2009). [CrossRef]
  15. J. V. Dave, “Scattering of electromagnetic radiation by a large, absorbing sphere,” IBM J. Res. Dev.  13, 302–313 (1969). [CrossRef]
  16. Z. Wu and Y. Wang, “Electromagnetic scattering for multi-layered sphere: recursive algorithms,” Radio Sci.  26, 1393–1401 (1991). [CrossRef]
  17. Z. Wu, L. Guo, K. Ren, G. Gouesbet, and G. Gréhan, “Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt.  36, 5188–5198 (1997). [CrossRef] [PubMed]
  18. J. Shen, H. Wang, B. Wang, H. Yu, and B. Yu, “Stability in Debye series calculation for light scattering by absorbing particles and bubbles,” J. Quant. Spectrosc. Radiat. Transfer  111, 772–781 (2010). [CrossRef]
  19. E. A. Hovenac and J. A. Lock, “Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series,” J. Opt. Soc. Am. A  9, 781–795 (1992). [CrossRef]
  20. R. Li, X. Han, H. Jiang, and K. Ren, “Debye series for light scattering by a multilayered sphere,” Appl. Opt.  45, 1260–1270 (2006). [CrossRef] [PubMed]
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  22. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  23. H. C. van de Hulst, Light Scattering by Small Particles(Chapman & Hall, 1957).
  24. W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt.  42, 1710–1720 (2003). [CrossRef] [PubMed]
  25. J. V. Dave, “Coefficients of the Legendre and Fourier series for the scattering functions of spherical particles,” Appl. Opt.  9, 1888–1896 (1970). [PubMed]
  26. W. J. Lentz, “Generating Bessel functions in Mie scattering calculations using continued fractions,” Appl. Opt.  15, 668–671 (1976). [CrossRef] [PubMed]
  27. J. Shen and X. Cai, “Algorithm of numerical calculation on Lorentz Mie theory,” PIERS Online  1, 691–694 (2005). [CrossRef]
  28. H. M. Nussenzveig, “High-frequency scattering by a transparent sphere. I. Direct reflection and transmission,” J. Math. Phys.  10 (1), 82–124 (1969). [CrossRef]
  29. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt.  19, 1505–1509 (1980). [CrossRef] [PubMed]
  30. G. Roll, T. Kaiser, and G. Schweiger, “Controlled modification of the expansion order as a tool in Mie computations,” Appl. Opt.  37, 2483–2492 (1998). [CrossRef]
  31. P. Laven, “MiePlot: a computer program for scattering of light from a sphere using Mie theory & the Debye series,” http://www.philiplaven.com/mieplot.htm (2009).
  32. G. Gouesbet, “Debye series formulation for generalized Lorenz-Mie theory with the Bromwich method,” Part. Part. Syst. Charact.  20, 382–386 (2003). [CrossRef]
  33. R. Li, X. Han, H. Jiang, and K. Ren, “Debye series of normally incident plane-wave scattering by an infinite multilayered cylinder,” Appl. Opt.  45, 6255–6262 (2006). [CrossRef] [PubMed]
  34. R. Li, X. Han, L. Shi, K. Ren, and H. Jiang, “Debye series for Gaussian beam scattering by a multilayered sphere,” Appl. Opt.  46, 4804–4812 (2007). [CrossRef] [PubMed]
  35. R. Li and X. Han, “Generalized Debye series expansion of electromagnetic plane wave scattering by an infinite multilayered cylinder at oblique incidence,” Phys. Rev. E  79, 036602(2009). [CrossRef]
  36. R. Li, X. Han, and K. Ren, “Debye series expansion of shaped beam scattering by GI-POF,” Opt. Commun.  282, 4315–4321(2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited