OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 13 — May. 1, 2010
  • pp: 2441–2445

Ultralow loss single-mode silica tapers manufactured by a microheater

Lu Ding, Cherif Belacel, Sara Ducci, Giuseppe Leo, and Ivan Favero  »View Author Affiliations

Applied Optics, Vol. 49, Issue 13, pp. 2441-2445 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (428 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a ceramic thermoelectric heater, we show highly reproducible fabrication of single-mode sub wavelength silica tapers with an ultralow loss level. The reproducibility of the process is studied statistically, leading to an average taper transmission of 94%. The best tapers have a transmission superior to 99%, above the level commonly reached by other fabrication methods. The taper profile is inspected along its length and closely follows the exponential profile predicted by the model of Birks and Li. This high degree of control over the taper shape allows a detailed analysis of the transition to the single-mode regime during tapering. As an application of this fabrication method, we present a microlooped taper probe for evanescent coupling experiments requiring fine spatial selectivity.

© 2010 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.7370) Optical devices : Waveguides
(350.3950) Other areas of optics : Micro-optics
(060.4005) Fiber optics and optical communications : Microstructured fibers
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 21, 2010
Revised Manuscript: March 24, 2010
Manuscript Accepted: March 31, 2010
Published: April 23, 2010

Lu Ding, Cherif Belacel, Sara Ducci, Giuseppe Leo, and Ivan Favero, "Ultralow loss single-mode silica tapers manufactured by a microheater," Appl. Opt. 49, 2441-2445 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, “Broad-band all-fiber filters for wavelength division multiplexing application,” Appl. Phys. Lett.  54, 1290–1292 (1989). [CrossRef]
  2. L. C. Bobb and P. M. Shankar, “Tapered optical fiber components and sensors,” Microwave J.  35, 218 (1992).
  3. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.  25, 1415–1417 (2000). [CrossRef]
  4. J. C. Knight, G. Cheung, F. Jacques, and T. Birks, “Phase-matched excitation of whispering gallery mode resonances by a fiber taper,” Opt. Lett.  22, 1129–1131 (1997). [CrossRef] [PubMed]
  5. M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering gallery modes by use of a symmetrical dual coupling configuration,” Opt. Lett.  25, 260–262 (2000). [CrossRef]
  6. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical fiber based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B  70, 081306 (2004). [CrossRef]
  7. I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, “Curved microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.  87, 131107 (2005). [CrossRef]
  8. C. Grillet, C. Monat, C. L. C. Smith, B. Eggleton, D. J. Moss, S. Frederick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express  15, 1267–1276 (2007). [CrossRef] [PubMed]
  9. L. Tong, R. R. Gattas, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength diameter silica wires for low-loss optical wave guiding,” Nature  426, 816–819(2003). [CrossRef] [PubMed]
  10. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express  12, 2258–2263(2004). [CrossRef] [PubMed]
  11. F. Orucevic, V. Lefevre-Seguin, and J. Hare, “Transmittance and near field characterization of sub-wavelength tapered optical fibers,” Opt. Express  15, 13624–13629(2007). [CrossRef] [PubMed]
  12. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber taper probe for wafer scale microphotonics device characterization,” Opt. Express  15, 4745–4752(2007). [CrossRef] [PubMed]
  13. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express  12, 2864–2869 (2004). [CrossRef] [PubMed]
  14. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.  42, 517–519 (2006). [CrossRef]
  15. G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett.  41, 400–402 (2005). [CrossRef]
  16. Y. Takeuchi and J. Noda, “Novel fiber coupler tapering process using a microheater,” IEEE Photonics Technol. Lett.  4, 465–467 (1992). [CrossRef]
  17. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol.  10, 432–438 (1992). [CrossRef]
  18. J. L. Mrotek, M. J. Matthewson, and C. R. Kurkjian, “The fatigue of high strength fused silica optical fibers in low humidity,” J. Non-Cryst. Solids  297, 91–95 (2002). [CrossRef]
  19. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  20. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).
  21. http://en.wikipedia.org/wiki/Gabor_transform
  22. A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microwave Theory Tech.  17, 1130–1138 (1969). [CrossRef]
  23. M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Opt. Express  12, 3521–3531 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited