OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 13 — May. 1, 2010
  • pp: 2529–2538

Computational confocal tomography for simultaneous reconstruction of objects, occlusions, and aberrations

Keith Dillon and Yeshaiahu Fainman  »View Author Affiliations

Applied Optics, Vol. 49, Issue 13, pp. 2529-2538 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (920 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce and experimentally validate a computational imaging technique that employs confocal scanning and coherent detection in the Fourier domain. We show how this method may be used to tomographically reconstruct attenuation, aberration, and even occlusion. We also show how these image parameters may be combined with the conventional confocal image reconstruction of the object reflectivity. We demonstrate the method experimentally by imaging a sample consisting of an occlusion above a mirror of varying reflectivity.

© 2010 Optical Society of America

OCIS Codes
(110.1758) Imaging systems : Computational imaging
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Imaging Systems

Original Manuscript: August 26, 2009
Revised Manuscript: February 14, 2010
Manuscript Accepted: April 9, 2010
Published: April 27, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Keith Dillon and Yeshaiahu Fainman, "Computational confocal tomography for simultaneous reconstruction of objects, occlusions, and aberrations," Appl. Opt. 49, 2529-2538 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Paddock, “Principles and practices of laser scanning confocal microscopy,” Mol. Biotechnol. 16, 127–149 (2000). [CrossRef]
  2. S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, 1983).
  3. T. M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam CT (Springer, 2008).
  4. J. Devaney, “Reconstructive tomography with diffracting wavefields,” Inverse Probl. 2, 161–183 (1986). [CrossRef]
  5. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001). [CrossRef]
  6. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Muller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369–382 (1996). [CrossRef]
  7. P. Hariharan, Optical Interferometry, 2nd ed. (Elsevier, 2003).
  8. T. C. Wedberg, J. J. Stamnes, and W. Singer, “Comparison of the filtered backpropagation and the filtered backprojection algorithms for quantitative tomography,” Appl. Opt. 34, 6575–6581 (1995). [CrossRef]
  9. S. Kawata, O. Nakamura, T. Noda, H. Ooki, K. Ogino, Y. Kuroiwa, and S. Minami, “Laser computed-tomography microscope,” Appl. Opt. 29, 3805–3809 (1990). [CrossRef]
  10. A. M. Zysk, J. J. Reynolds, D. L. Marks, P. S. Carney, and S. A. Boppart, “Projected index computed tomography,” Opt. Lett. 28, 701–703 (2003). [CrossRef]
  11. O. Renaud, J. Viña, Y. Yu, C. Machu, A. Trouvé, H. Van der Voort, B. Chalmond, and S. L. Shorte, “High-resolution 3-D imaging of living cells in suspension using confocal axial tomography,” Biotechnol. J. 3, 53–62 (2008). [CrossRef]
  12. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002). [CrossRef]
  13. S. Kikuchi, K. Sonobe, and N. Ohyama, “Three-dimensional microscopic computed tomography based on generalized Radon transform for optical imaging systems,” Opt. Commun. 123, 725–733 (1996). [CrossRef]
  14. G. N. Vishnyakov, G. G Levin, V. L. Minaev, V. V. Pickalov, and A. V. Likhachev, “Tomographic interference microscopy of living cells,” Microscopy Anal. 18, 15–17 (2004).
  15. N. Lue, W. Choi, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion,” Opt. Express 16, 16240–16246 (2008). [CrossRef]
  16. D. L. Marks, S. C. Schlachter, A. M. Zysk, and S. A. Boppart, “Group refractive index reconstruction with broadband interferometric confocal microscopy,” J. Opt. Soc. Am. A 25, 1156–1164 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited