OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 13 — May. 1, 2010
  • pp: C132–C142

Laser-induced breakdown spectroscopy in industrial and security applications

Alexander A. Bol'shakov, Jong H. Yoo, Chunyi Liu, John R. Plumer, and Richard E. Russo  »View Author Affiliations


Applied Optics, Vol. 49, Issue 13, pp. C132-C142 (2010)
http://dx.doi.org/10.1364/AO.49.00C132


View Full Text Article

Enhanced HTML    Acrobat PDF (1276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced breakdown spectroscopy (LIBS) offers rapid, localized chemical analysis of solid or liquid materials with high spatial resolution in lateral and depth profiling, without the need for sample preparation. Principal component analysis and partial least squares algorithms were applied to identify a variety of complex organic and inorganic samples. This work illustrates how LIBS analyzers can answer a multitude of real-world needs for rapid analysis, such as determination of lead in paint and children’s toys, analysis of electronic and solder materials, quality control of fiberglass panels, discrimination of coffee beans from different vendors, and identification of generic versus brand-name drugs. Lateral and depth profiling was performed on children’s toys and paint layers. Traditional one-element calibration or multivariate chemometric procedures were applied for elemental quantification, from single laser shot determination of metal traces at 10 μg / g to determination of halogens at 90 μg / g using 50-shot spectral accumulation. The effectiveness of LIBS for security applications was demonstrated in the field by testing the 50-m standoff LIBS rasterizing detector.

© 2010 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3440) Lasers and laser optics : Laser-induced breakdown
(280.1545) Remote sensing and sensors : Chemical analysis
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

History
Original Manuscript: October 14, 2009
Revised Manuscript: January 25, 2010
Manuscript Accepted: February 1, 2010
Published: March 12, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

Citation
Alexander A. Bol'shakov, Jong H. Yoo, Chunyi Liu, John R. Plumer, and Richard E. Russo, "Laser-induced breakdown spectroscopy in industrial and security applications," Appl. Opt. 49, C132-C142 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-13-C132


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Aragón and J. A. Agueilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta Part B 63, 893-916 (2008). [CrossRef]
  2. A. Bogaerts and Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: anumerical modeling investigation,” Spectrochim. Acta Part B 60, 1280-1307 (2005). [CrossRef]
  3. A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384-395 (2006). [CrossRef]
  4. X. Mao, S.-B. Wen, and R. E. Russo, “Time-resolved laser induced plasma dynamics,” Appl. Surf. Sci. 253, 6316-6321(2007). [CrossRef]
  5. J.P.Singh and S.N.Thakur, eds., Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  6. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006). [CrossRef]
  7. A.W.Miziolek, V.Palleschi, and I.Schechter, eds., Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006). [CrossRef]
  8. Y.-I. Lee, K. Song, and J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, 2000).
  9. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463-512 (2007). [CrossRef]
  10. A. A. Boľshakov, A. A. Ganeev, and V. M. Nemets, “Prospects in analytical atomic spectrometry,” Russ. Chem. Rev. 75, 289-302 (2006), http://arxiv.org/pdf/physics/0607078. [CrossRef]
  11. J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061-1083(2004). [CrossRef]
  12. P. Fichet, M. Tabarant, B. Sallé, and C. Gautier, “Comparison between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338-344 (2006). [CrossRef] [PubMed]
  13. K. A. Slickers, “Spectrochemical analysis in the metallurgical industry,” Pure Appl. Chem. 65, 2443-2452 (1993). [CrossRef]
  14. V. B. E. Thomsen, Modern Spectrochemical Analysis of Metals: An Introduction for Users of Arc/Spark Instrumentation (ASM International, 1996). [PubMed]
  15. F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Current status of standoff LIBS security applications at the United States Army Research Laboratory,” Spectroscopy 24, 32-38 (2009).
  16. B. Sallé, P. Mauchien, and S. Maurice, “Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects--a review,” Spectrochim. Acta Part B 62, 739-768 (2007). [CrossRef]
  17. Applied Spectra instruments, www.appliedspectra.com/products.
  18. B. Chen, H. Kano, and M. Kuzuya, “Quantitative analysis of trace lead in tin-base lead-free solder by laser-induced plasma spectroscopy in air at atmospheric pressure,” Anal. Sci. 24, 289-291 (2008). [CrossRef] [PubMed]
  19. V. Piscitelli, M. A. Martínez, A. J. Fernández, J. J. González, X. L. Mao, and R. E. Russo, “Double pulse laser induced breakdown spectroscopy: experimental study of lead emission intensity dependence on the wavelengths and sample matrix,” Spectrochim. Acta Part B 64, 147-154 (2009). [CrossRef]
  20. B. J. Marquardt, S. R. Goode, and S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977-981 (1996). [CrossRef]
  21. B. C. Castle, A. K. Knight, K. Visser, B. W. Smith, and J. D. Winefordner, “Battery powered laser-induced plasma spectrometer for elemental determinations,” J. Anal. At. Spectrom. 13, 589-595 (1998). [CrossRef]
  22. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222-233 (1996). [CrossRef]
  23. R. A. Myers, N. J. Kolodziejski, and M. R. Squillante, “Commercialization of laser-induced breakdown spectroscopy for lead-in-paint inspection,” Appl. Opt. 47, G7-G14 (2008). [CrossRef]
  24. R. Bruder, D. Menut, and V. Detalle, “Effects of LIBS measurement parameters on wall paintings pigments alteration and detection,” in Lasers in the Conservation of Artworks, J.Nimmrichter, W.Kautek, and M.Schreiner, eds. (Springer, 2007), pp. 367-375. [CrossRef]
  25. P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269-278 (2001). [CrossRef]
  26. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005). [CrossRef]
  27. I. Radivojevic, R. Niessner, C. Haisch, S. Florek, H. Becker-Ross, and U. Panne, “Detection of bromine in thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 59, 335-343 (2004). [CrossRef]
  28. R. Sattmann, I. Mönch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, and R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456-461 (1998). [CrossRef]
  29. L. Caneve, F. Colao, F. Fabbri, R. Fantoni, V. Spizzichino, and J. Striber, “Laser-induced breakdown spectroscopy analysis of asbestos,” Spectrochim. Acta Part B 60, 1115-1120 (2005). [CrossRef]
  30. C. J. Lorenzen, C. Carlhoff, U. Hahn, and M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029-1035 (1992). [CrossRef]
  31. W. Yin, L. Zhang, L. Dong, M. Weiguang, and S. Jia, “Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants,” Appl. Spectrosc. 63, 865-872 (2009). [CrossRef] [PubMed]
  32. E. J. Ferreira, E. C. Ferreira, A. C. B. Delbem, D. M.B. P. Milori, and D. F. Orsini, “Ensemble of classifiers for analyzing coffees with laser induced breakdown spectroscopy,” in Abstracts of the 5th Euro Mediterranean Symposium on Laser Induced Spectroscopy, Rome, Italy, L.Ganeve, ed. (ENEA, 2009), p. 102.
  33. M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, and R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28, 935-943 (2002). [CrossRef] [PubMed]
  34. M. C. Madamba, W. M. Mullett, S. Debnath, and E. Kwong, “Characterization of tablet film coatings using a laser-induced breakdown spectroscopic technique,” AAPS PharmSciTech 8, 103 (2007). [CrossRef]
  35. M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy echelle system for elemental and molecular microanalysis,” Spectrochim. Acta Part B 64, 1219-1227 (2009). [CrossRef]
  36. M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566-9571 (2009). [CrossRef]
  37. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008). [CrossRef] [PubMed]
  38. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283-300(2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited