OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 13 — May. 1, 2010
  • pp: C16–C20

Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples

Aleš Hrdlička, Lubomír Prokeš, Alice Staňková, Karel Novotný, Anna Vitešníková, Viktor Kanický, Vítězslav Otruba, Jozef Kaiser, Jan Novotný, Radomír Malina, and Kateřina Páleníková  »View Author Affiliations

Applied Optics, Vol. 49, Issue 13, pp. C16-C20 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (283 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The development of a remote laser-induced breakdown spectroscopy (LIBS) setup with an off-axis Newtonian collection optics, Galilean-based focusing telescope, and a 532 nm flattop laser beam source is presented. The device was tested at a 6 m distance on a slice of bone to simulate its possible use in the field, e.g., during archaeological excavations. It is shown that this setup is sufficiently sensitive to both major (P, Mg) and minor elements (Na, Zn, Sr). The measured quantities of Mg, Zn, and Sr correspond to the values obtained by reference laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) measurements within an approximately 20% range of uncertainty. A single point calibration was performed by use of a bone meal standard . The radial element distribution is almost invariable by use of LA-ICP-MS, whereas the LIBS measurement showed a strong dependence on the sample porosity. Based on these results, this remote LIBS setup with a relatively large ( 350 mm ) collecting mirror is capable of semiquantitative analysis at the level of units of mg kg 1 .

© 2010 Optical Society of America

OCIS Codes
(280.1545) Remote sensing and sensors : Chemical analysis
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

Original Manuscript: October 20, 2009
Revised Manuscript: December 22, 2009
Manuscript Accepted: January 11, 2010
Published: February 3, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Aleš Hrdlička, Lubomír Prokeš, Alice Staňková, Karel Novotný, Anna Vitešníková, Viktor Kanický, Vítězslav Otruba, Jozef Kaiser, Jan Novotný, Radomír Malina, and Kateřina Páleníková, "Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples," Appl. Opt. 49, C16-C20 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006). [CrossRef]
  2. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy, Fundamentals and Applications (Cambridge U. Press, 2006). [CrossRef]
  3. B. Sallé, P. Mauchien, and S. Maurice, “Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects,” Spectrochim. Acta Part B 62, 739-768(2007). [CrossRef]
  4. H. W. Hubble, M. Ghosh, S. K. Sharma, K. A. Horton, P. G. Lucey, S. M. Angel, and R. C. Wiens, “A combined remote LIBS and Raman spectroscopic study of minerals,” in Lunar Planetary Science Conference, Vol. XXXIII (Lunar and Planetary Institute, 2002), abstract 1935, http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1935.pdf.
  5. S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta Part A 68, 1036-1045 (2007). [CrossRef]
  6. S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. F. Lentz, “A combined remote Raman, LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta Part A 73, 468-476 (2009). [CrossRef]
  7. R. Gronlund, M. Lundqvist, and S. Svanberg, “Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system,” Appl. Spectrosc. 60, 853-859 (2006). [CrossRef] [PubMed]
  8. J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser induced breakdown spectroscopy (LIBS) analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. Planets 111, E05006 (2006). [CrossRef]
  9. B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006). [CrossRef]
  10. C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006). [CrossRef]
  11. S. Palanco, S. Conesa, and J. J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19, 462-467 (2004). [CrossRef]
  12. P. L. Garcia, J. M. Vadillo, and J. J. Laserna, “Real-time monitoring of high temperature corrosion in stainless steel by open-path laser-induced plasma spectrometry,” Appl. Spectrosc. 58, 1347-1352 (2004). [CrossRef]
  13. C. López-Moreno, S. Palanco, and J. J. Laserna, “Quantitative analysis of samples at high temperature with remote laser-induced breakdown spectrometry using a room-temperature calibration plot,” Spectrochim. Acta Part B 60, 1034-1039(2005). [CrossRef]
  14. A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta Part B 63, 305-311 (2008). [CrossRef]
  15. J. B. Lambert, S. Vlasak Simpson, J. E. Buikstra, and D. Hanson, “Electron microprobe analysis of elemental distribution in excavated human femurs,” Am. J. Phys. Anthropol. 62, 409-423 (1983). [CrossRef] [PubMed]
  16. R. B. Parker and H. Toots, “Minor elements in fossil bone,” Geol. Soc. Am. Bull. 81, 925-932 (1970). [CrossRef]
  17. N. Boscher-Barre, P. Trocellier, N. Deschamps, C. Dardenne, J. Blondiaux, and L. Buchet, “Nuclear miroprobe study of trace element in archaeological bones,” J. Trace Microprobe Tech. 10, 77-90 (1992).
  18. N. Boscher-Barre and P. Trocellier, “Nuclear microprobe study of a woman's skeleton from the sixth century,” Nucl. Instrum. Methods Phys. Res. B 73, 413-416 (1993). [CrossRef]
  19. R. Brenn, Ch. Haug, U. Klar, S. Zander, K. W. Alt, D. N. Jamieson, K. K. Lee, and H. Schutkowski, “Post-mortem intake of lead in 11th century human bones and teeth studied by milli- and microbeam PIXE and RBS,” Nucl. Instrum. Methods Phys. Res. B 158, 270-274 (1999). [CrossRef]
  20. St. Jankuhn, T. Butz, R.-H. Flagmeyer, T. Reinert, J. Vogt, B. Barckhausen, J. Hammerl, R. Protsch von Zieten, D. Grambole, F. Herrmann, and K. Bethge, “Ion microprobe analyses of ancient human bone,” Nucl. Instrum. Methods Phys. Res. B 136-138, 329-333 (1998). [CrossRef]
  21. P. Voglis, A. Attaelmanan, P. Engström, S. Larsson, A. Rindby, K. Boström, and C. G. Helander, “Elemental mapping of bone tissues by use of capillary focused XRF,” X-Ray Spectrom. 22, 229-233 (1993). [CrossRef]
  22. M. L. Carvalho, A. F. Marques, M. T. Lima, and U. Reus, “Trace elements distribution and post-mortem intake in human bones from middle age by total reflection x-ray fluorescence,” Spectrochim. Acta Part B 59, 1251-1257 (2004). [CrossRef]
  23. D. Kang, D. Amarasiriwardena, and A. H. Goodman, “Application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layer and pulp,” Anal. Bioanal. Chem. 378, 1608-1615 (2004). [CrossRef] [PubMed]
  24. D. J. Bellis, K. M. Hetter, J. Jones, D. Amarasiriwardena, and P. J. Parsons, “Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone,” J. Anal. At. Spectrom. 21, 948-954(2006). [CrossRef]
  25. M. D. Seltzer, V. A. Lance, and R. M. Elsey, “Laser ablation ICP-MS analysis of the radial distribution of lead in the femur of Alligator mississippiensis,” Sci. Total Environ. 363, 245-252 (2006). [CrossRef]
  26. O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liška, J. O. Cáceres, and A. Gonzáles Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta Part B 56, 865-875 (2001). [CrossRef]
  27. M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta Part B 62, 1426-1432 (2007). [CrossRef]
  28. T. A. Elliott and G. W. Grime, “Examining of diagenetic alteration of human bone material from a range of archaeological burial sites using nuclear microscopy,” Nucl. Instrum. Methods Phys. Res. B 77, 537-547 (1993). [CrossRef]
  29. S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta Part B 61, 88-95 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited