OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 13 — May. 1, 2010
  • pp: C27–C35

Towards the clinical application of laser-induced breakdown spectroscopy for rapid pathogen diagnosis: the effect of mixed cultures and sample dilution on bacterial identification

Steven J. Rehse, Qassem I. Mohaidat, and Sunil Palchaudhuri  »View Author Affiliations


Applied Optics, Vol. 49, Issue 13, pp. C27-C35 (2010)
http://dx.doi.org/10.1364/AO.49.000C27


View Full Text Article

Enhanced HTML    Acrobat PDF (669 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced breakdown spectroscopy has been utilized to classify and identify bacterial specimens on the basis of their atomic composition. We have characterized the effect that the presence of a second bacterial species in the ablated specimen had on the identification of the majority species. Specimens with a reduced number of bacterial cells (approximately 2500) were identified with 100% accuracy when compared to undiluted specimens. In addition, a linear dependence of the total spectral power as a function of cell number was determined. Lastly, a high selectivity was obtained for a LIBS-based analysis of nine separate bacterial strains from four genera.

© 2010 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(300.6210) Spectroscopy : Spectroscopy, atomic
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

History
Original Manuscript: September 30, 2009
Revised Manuscript: January 12, 2010
Manuscript Accepted: January 15, 2010
Published: February 12, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Steven J. Rehse, Qassem I. Mohaidat, and Sunil Palchaudhuri, "Towards the clinical application of laser-induced breakdown spectroscopy for rapid pathogen diagnosis: the effect of mixed cultures and sample dilution on bacterial identification," Appl. Opt. 49, C27-C35 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-13-C27


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Morel, M. Leone, P. Adam, and J. Amouroux, “Detection of bacteria by time-resolved laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6184-6191 (2003). [CrossRef] [PubMed]
  2. A. R. Boyain-Goitia, D. C. S. Beddows, B. C. Griffiths, and H. H. Telle, “Single-pollen analysis by laser-induced breakdown spectroscopy and Raman spectroscopy,” Appl. Opt. 42, 6119-6132 (2003). [CrossRef] [PubMed]
  3. J. D. Hybl, G. A. Lithgow, and S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207-1215 (2003). [CrossRef] [PubMed]
  4. N. Leone, G. D'Arthur, P. Adam, and J. Amouroux, “Detection of bacterial deposits and bioaerosals by time-resolved laser-induced breakdown spectroscopy (TRELIBS),” High Technol. Plasma Process. 8, 1-22 (2004).
  5. T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, “Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy,” J. Phys. Chem. B 108, 5477-5482 (2004). [CrossRef]
  6. P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631-638 (2005). [CrossRef] [PubMed]
  7. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901(2006). [CrossRef]
  8. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006). [CrossRef]
  9. J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 90, 163901 (2007). [CrossRef]
  10. H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151-156 (2007). [CrossRef]
  11. S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009). [CrossRef]
  12. M. Baudelet, M. Boueri, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Laser ablation of organic materials for discrimination of bacteria in an inorganic background,” Proc. SPIE 7214, 72140J (2009). [CrossRef]
  13. A. L. Smith, “Central nervous System,” in Mechanisms of Microbial Disease, 3rd ed., M. Schaechter, N. C. Engleberg, B. I. Eisenstein, and G. Medoff, eds. (ASM Press, 1999), pp. 535-548.
  14. Jay H. Stein, Internal Medicine, 5th ed. (Mosby, 1998).
  15. A. L. Truant, ed., Manual of Commercial Methods in Clinical Microbiology (ASM Press, 2002).
  16. J. S. Santo Domingo and M. J. Sadowsky, eds., Microbial Source Tracking (ASM Press, 2007).
  17. D. Wang, L. Coscoy, M. Zylberberg, P. C. Avila, H. A. Boushey, D. Ganem, and J. L. DeRisi, “Microarray-based detection and genotyping of viral pathogens,” Proc. Natl. Acad. Sci. U.S.A. 99, 15687-15692 (2002). [CrossRef] [PubMed]
  18. D. R. Calla, M. K. Boruckia, and F. J. Loged, “Detection of bacterial pathogens in environmental samples using DNA microarrays,” J. Microbiol. Meth. 53, 235-243 (2003). [CrossRef]
  19. Q. Hoshino, L. S. Yilmaz, D. R. Noguera, H. Daims, and M. Wagner, “Quantification of target molecules need to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH,” Appl. Environ. Microbiol. 74, 5068-5077 (2008). [CrossRef] [PubMed]
  20. D. R. DeMarco and D. V. Lim, “Detection of Escherichia coli O157∶H7 in 10- and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides,” J. Food Prot. 65, 596-602 (2002). [PubMed]
  21. C. Massonet, T. De Baere, and J. Van Eldere, “Direct identification of bacteria in clinical respiratory samples using fluorescent amplicon length analysis of 16 S-23 S rRNA spacer-region,” J. Microbiol. Meth. 66, 369-379 (2006). [CrossRef]
  22. Ø. Kommedal, B. Karlsen, and Ø. Sæbø, “Analysis of mixed sequencing chromatograms and its application in direct 16 S rRNA gene sequencing of polymicrobial samples,” J. Clin. Microbiol. 46, 3766-3771 (2008). [CrossRef] [PubMed]
  23. D. Mara and N. J. Horan, Handbook of Water and Wastewater Microbiology, 1st ed. (Wiley, 2003).
  24. H. Salimnia, Technical Director Molecular Biology Detroit Medical Center University Laboratories, Detroit Michigan, USA (personal communication).
  25. S. J. Rehse and Q. I. Mohaidat, “The effect of sequential dual-gas testing on a LIBS-based discrimination of brass and bacteria,” Spectrochim. Acta B 64, 1020-1027 (2009). [CrossRef]
  26. J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702(2007). [CrossRef]
  27. R. K. Poole, Advances in Microbial Physiology (Academic Press, 2009), Vol. 55. [PubMed]
  28. S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 62, 1169-1176 (2007). [CrossRef]
  29. A. C. Samuels, F. C. DeLucia, Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003). [CrossRef] [PubMed]
  30. C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217-1224 (2005). [CrossRef]
  31. F. C. DeLucia Jr., A. C. Samuels, R. S. Harmon, R. A. Walter, K. L. McNesby, A. LaPointe, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 50, 681-689 (2005). [CrossRef]
  32. M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006). [CrossRef]
  33. J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007). [CrossRef]
  34. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited