OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 13 — May. 1, 2010
  • pp: C49–C57

Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

Erica M. Cahoon and Jose R. Almirall  »View Author Affiliations

Applied Optics, Vol. 49, Issue 13, pp. C49-C57 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (774 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm , were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser–glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser–glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

© 2010 Optical Society of America

OCIS Codes
(160.2120) Materials : Elements
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

Original Manuscript: November 4, 2009
Revised Manuscript: January 25, 2010
Manuscript Accepted: January 26, 2010
Published: February 24, 2010

Erica M. Cahoon and Jose R. Almirall, "Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy," Appl. Opt. 49, C49-C57 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. German, D. Morgans, A. Butterworth, and A. Scaplehorn, “A survey of British container glass using spark source mass spectrometry with electrical detection,” J. Forensic Sci. Soc. 18, 113-121 (1978). [CrossRef] [PubMed]
  2. E. C. Blacklock, A. Rogers, C. Wall, and B. B. Wheels, “The quantitative analysis of glass by emission spectrography: a six element survey,” Forensic Sci. 7, 121-130 (1976). [CrossRef] [PubMed]
  3. R. D. Koons, C. A. Peters, and P. S. Rebbert, “Comparison of refractive index, energy dispersive X-ray fluorescence and inductively coupled plasma atomic emission spectrometry for forensic characterization of sheet glass fragments,” J. Anal. At. Spectrom. 6, 451-456 (1991). [CrossRef]
  4. J. Buscaglia, “Elemental analysis of small glass fragments in forensic science,” Anal. Chim. Acta 288, 17-24 (1994). [CrossRef]
  5. R. F. Coleman and G. C. Goode, “Comparison of glass fragments by neutron activation analysis,” J. Radioanal. Chem. 15, 367-388 (1973). [CrossRef]
  6. P. Kuisma-Kursula, “Accuracy, precision and detection limits of SEM-WDS, energy-dispersive spectroscopy and PIXE in the multi-elemental analysis of medieval glass,” X-Ray Spectrom. 29, 111-118 (2000). [CrossRef]
  7. K. L. Wolnik, C. M. Gaston, and F. L. Fricke, “Analysis of glass in product tampering investigations by inductively coupled plasma atomic emission spectrometry with a hydrofluoric acid resistant torch,” J. Anal. At. Spectrom. 4, 27-31 (1989). [CrossRef]
  8. A. Zurhaar and M. Mullings, “Characterization of forensic glass samples using inductively coupled plasma mass spectrometry,” J. Anal. At. Spec. 5, 611-617 (1990). [CrossRef]
  9. C. Latkoczy, S. Becker, M. Dücking, D. Günther, J. A. Hoogewerff, J. R. Almirall, J. Buscaglia, A. Dobney, R. D. Koons, S. Montero, G. J. van der Peijl, W. R. Stoecklein, T. Trejos, J. R. Watling, and V. S. Zdanowicz, “Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS,” J. Forensic Sci. 50, 1327-1341 (2005). [CrossRef] [PubMed]
  10. B. E. Naes, A. Umpierrez, S. Ryland, C. Barnett, and J. R. Almirall, “A comparison of laser ablation inductively coupled plasma mass spectrometry, micro X-ray fluorescence spectroscopy, and laser induced breakdown spectroscopy for the discrimination of automotive glass,” Spectrochim. Acta Part B 63, 1145-1150 (2008). [CrossRef]
  11. E. M. Rodriguez-Celis, I. B. Gornushkin, U. M. Heitmann, J. R. Almirall, B. W. Smith, J. D. Winefordner, and N. Omenetto, “Laser induces breakdown spectroscopy as a tool for discrimination of glass for forensic applications,” Anal. Bioanal. Chem. 391, 1961-1968 (2008). [CrossRef] [PubMed]
  12. R. E. Russo, X. L. Mao, O. V. Borisov, and H. Liu, “Influence of wavelength on fractionation in laser ablation ICP-MS,” J. Anal. At. Spectrom. 15, 1115-1120 (2000). [CrossRef]
  13. C. Geertsen, A. Briand, F. Chartier, J. Lacour, P. Mauchien, S. Sjöström, and J. Mermet, “Comparision between infrared and ultraviolet laser ablation at atmospheric pressure-implications for solid sampling inductively coupled plasma spectrometry,” J. Anal. At. Spectrom. 9, 17-22 (1994). [CrossRef]
  14. C. Barnett, E. Cahoon, and J. R. Almirall, “Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1016-1023 (2008). [CrossRef]
  15. L. M. Cabalin and J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta Part B 53, 723-730 (1998). [CrossRef]
  16. X. L. Mao, A. C. Ciocan, O. V. Borisov, and R. E. Russo, “Laser ablation processes investigated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES),” Appl. Surf. Sci. 127-129, 262-268 (1998). [CrossRef]
  17. L. M. Berman and P. J. Wolf, “Laser-induced spectroscopy of liquids: aqueous solutions of nickel and chlorinated hydrocarbons,” Appl. Spectrosc. 52, 438-443 (1998). [CrossRef]
  18. J. R. Almirall and T. Trejos, “Advances in the forensic analysis of glass fragments with a focus on refractive index and elemental analysis,” Forensic Sci. Rev. 18, 73-96 (2006).
  19. T. Ishizuka, “Laser emission spectrography of rare earth elements,” Anal. Chem 45, 538-541 (1973). [CrossRef]
  20. C. Girault, Ph.D. thesis (Université de Limoges, 1990).
  21. A. Santagata, A. De Bonis, P. Villani, R. Teghil, and G. P. Parisi, “Fs/ns-dual-pulse orthogonal geometry plasma plume reheating for copper-based-alloys analysis,” Appl. Surf. Sci. 252, 4685-4690 (2006). [CrossRef]
  22. J. Scaffidi, W. Pearman, J. C. Carter, B. W. Colston, Jr., and S. M. Angel, “Temporal dependence of the enhancement of material removal in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 43, 6492-6499 (2004). [CrossRef] [PubMed]
  23. L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, and V. Lazicm, “Influence of laser wavelength on LIBS diagnostics applied to the analysis of ancient bronzes,” Anal. Bioanal. Chem. 385, 272-280 (2006). [CrossRef] [PubMed]
  24. C. Gautier, P. Fichet, D. Menut, J. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double pulse setup with an orthogonal beam geometry for laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 975-986 (2004). [CrossRef]
  25. L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998). [CrossRef]
  26. F. C. De Lucia, Jr., J. L. Gottfried, D. A. Munson, and A. W. Miziolek, “Double-pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404 (2007). [CrossRef]
  27. D. N. Stratis, K. L. Eland, and S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719-1726 (2000). [CrossRef]
  28. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. Colston Jr., J. C. Carter, and S. M. Ange, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099-6106(2003). [CrossRef] [PubMed]
  29. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta Part B 59, 1907-1917 (2004). [CrossRef]
  30. V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, “Time resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced break plasma from a glass sample,” Spectrochim. Acta Part B 63, 19-26 (2008). [CrossRef]
  31. H. Kurniawan, S. Nakajima, J. E. Batubara, M. Marpaung, M. Okamoto, and K. Kagawa, “Laser-Induced shock wave plasma in glass and its application to elemental analysis,” Appl. Spectrosc. 49, 1067-1072 (1995). [CrossRef]
  32. M. A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, and M. Harith, “Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations,” Anal. Bioanal. Chem. 385, 316-325 (2006) [CrossRef] [PubMed]
  33. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222-233 (1996). [CrossRef]
  34. D. A. Cremers, J. E. Barefield II., and A. C. Koskelo, “Remote elemental analysis by laser-induced breakdown spectroscopy using a fiber-optic cable,” Appl. Spectrosc. 49, 857-860 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited