OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 13 — May. 1, 2010
  • pp: C58–C66

Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds

Paul J. Dagdigian, Ani Khachatrian, and Valeri I. Babushok  »View Author Affiliations

Applied Optics, Vol. 49, Issue 13, pp. C58-C66 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A kinetic model to predict the relative intensities of the atomic C/H/N/O emission lines in laser-induced breakdown spectroscopy (LIBS) has been developed for organic compounds. The model includes a comprehensive set of chemical processes involving both neutral and ionic chemistry and physical excitation and de-excitation of atomic levels affecting the neutral, ionic, and excited-state species concentrations. The relative excited-state atom concentrations predicted by this modeling are compared with those derived from the observed LIBS intensities for 355 nm ns laser irradiation of residues of two organic compounds on aluminum substrate. The model reasonably predicts the relative excited-state concentrations, as well as their time profiles. Comparison of measured and computed concentrations has also allowed an estimation of the degree of air entrainment.

© 2010 Optical Society of America

OCIS Codes
(000.1570) General : Chemistry
(350.5400) Other areas of optics : Plasmas
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

Original Manuscript: September 18, 2009
Revised Manuscript: January 12, 2010
Manuscript Accepted: January 15, 2010
Published: February 24, 2010

Paul J. Dagdigian, Ani Khachatrian, and Valeri I. Babushok, "Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds," Appl. Opt. 49, C58-C66 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. J. Radziemski and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Dekker, 1989).
  2. A. W. Miziolek, V. Palleschi, and I. Schechter, eds., Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge U. Press, 2006).
  3. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  4. J. P. Singh and S. N. Thakur, eds., Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  5. J. Gonzalez, C. Liu, J. Yoo, X. Mao, and R. E. Russo, “Double-pulse laser ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta Part B 60, 27-31 (2005).
  6. V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42, 5947-5962 (2003). [CrossRef]
  7. V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta Part B 60, 926-934 (2005).
  8. V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of the explosive cyclotrimethylenetrinitramine" (RDX),” Spectrochim. Acta Part B 62, 1321-1328 (2007).
  9. A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384-395 (2006).
  10. A. Bogaerts, Z. Chen, and D. Autrique, “Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation,” Spectrochim. Acta Part B 63, 746-754(2008).
  11. A. Casavola, G. Colonna, A. De Giacomo, and M. Capitelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transf. 17, 225-231 (2003). [CrossRef]
  12. M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta Part B 59, 271-289 (2004).
  13. F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta B 56, 973-986 (2001).
  14. C. J. Rennick, R. Engeln, J. A. Smith, A. J. Orr-Ewing, and M. N. R. Ashfold, “Measurement and modeling of a diamond deposition reactor: hydrogen atom and electron number densities in an Ar/H2 arc jet discharge,” J. Appl. Phys. 97, 113306 (2005). [CrossRef]
  15. NIST Chemical Kinetics Database<http://kinetics.nist.gov/kinetics/index.jsp>.
  16. D. L. Baulch, D. D. Drysdale, J. Duxbury, and S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Volume 3. Homogeneous Gas Phase Reactions of the O2─O3 System, the CO─O2─H2 System, and of Sulphur-Containing Species (Butterworths, 1976).
  17. D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847-1033 (1994).
  18. C. Park, J. T. Howe, R. J. Jaffe, and G. V. Candler, “Review of chemical-kinetic problems of future NASA missions, II: Mars entries,” J. Thermophys. Heat Transf. 8, 9-23 (1994).
  19. W. L. Morgan, “Electron collision data for plasma modeling,” Adv. At. Mol. Opt. Phys. 43, 79-110 (2000).
  20. GRI-Mech combustion model<http://www.me.berkeley.edu/gri-mech/>.
  21. Atomic & Molecular Numerical Databases National Institute for Fusion Science-Japan <https://dbshino.nifs.ac.jp/>.
  22. S. S. Tayal, “Effective collision strengths for electron impact excitation of N I,” At. Data Nucl. Tables 76, 191-212(2000).
  23. O. Zatsarinny and S. S. Tayal, “Electron collision excitation rates for O I using the B-spline R-matrix approach,” Astrophys. J. Suppl. Ser. 148, 575-582 (2003). [CrossRef]
  24. D. Detleffsen, M. Anton, A. Werner, and K.-H. Schartner, “Excitation of atomic hydrogen by protons and multiply charges ions at intermediate velocities,” J. Phys. B: At. Mol. Opt. Phys. 27, 4195-4213 (1994).
  25. NIST Atomic Spectra Database, version 3 <http://physics.nist.gov/PhysRefData/ASD>.
  26. A. Portnov, S. Rosenwaks, and I. Bar, “Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air,” Appl. Opt. 42, 2835-2842 (2003). [CrossRef]
  27. D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 μm,” Appl. Opt. 47, G149-G157 (2008). [CrossRef]
  28. Yu. M. Smirnov, “Cross sections for aluminum atom excitation by electron impact,” Opt. Spectrosc. 82, 200-204 (1997).
  29. Chemkin-PRO, (Reaction Design, San Diego, California, USA, 2008) <http://www.reactiondesign.com>.
  30. A. Khachatrian and P. J. Dagdigian, “Laser-induced breakdown spectroscopy with laser irradiation on mid-infrared hydride stretch transitions: polystyrene,” Appl. Phys. B 97, 243-248 (2009). [CrossRef]
  31. C. Fleurier, S. Sahal-Bréchot, and J. Chapelle, “Stark profiles of Al I and Al II lines,” J. Phys. B: At. Mol. Phys. 10, 3435-3441(1977).
  32. N. Konjevic and M. S. Dimitrijevic, “Experimental Stark widths and shifts for spectral lines of neutral atoms: a critical veview of selected data for the period 1976 to 1982,” J. Phys. Chem. Ref. Data 13, 619-647 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited