OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 13 — May. 1, 2010
  • pp: C8–C15

Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

Jaime A. Stearns, Sarah E. McElman, and James A. Dodd  »View Author Affiliations

Applied Optics, Vol. 49, Issue 13, pp. C8-C15 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (631 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

© 2010 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.2140) Spectroscopy : Emission
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

Original Manuscript: October 2, 2009
Revised Manuscript: December 31, 2009
Manuscript Accepted: January 4, 2010
Published: February 3, 2010

Jaime A. Stearns, Sarah E. McElman, and James A. Dodd, "Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy," Appl. Opt. 49, C8-C15 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. C. DeLucia, Jr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005). [CrossRef]
  2. J. L. Gottfried, F. C. Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008). [CrossRef]
  3. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353-363 (2008). [CrossRef] [PubMed]
  4. C. A. Munson, J. L. Gottfried, E. G. Snyder, J. F. C. De Lucia, B. Gullett, and A. W. Miziolek, “Detection of indoor biological hazards using the man-portable laser induced breakdown spectrometer,” Appl. Opt. 47, G48-G57 (2008). [CrossRef]
  5. A. W. Miziolek, V. Palleschi, and I. Schechter, eds., Laser-Induced Breakdown Spectroscopy (Cambridge U. Press, 2006). [CrossRef]
  6. J. D. Hybl, S. M. Tysk, S. R. Berry, and M. P. Jordan, “Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection,” Appl. Opt. 45, 8806-8814(2006). [CrossRef] [PubMed]
  7. R. G. Meyerand and A. F. Haught, “Gas breakdown at optical frequencies,” Phys. Rev. Lett. 11, 401-403 (1963). [CrossRef]
  8. P. Maker, R. Terhune, and C. Savage, “Optical third harmonic generation,” in Proceedings of the Third International Quantum Electronics Conference (Columbia University, 1963), p. 1559.
  9. L. Dudragne, P. Adam, and J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321-1327 (1998). [CrossRef]
  10. Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Probability distribution of laser-induced breakdown and ignition of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 66, 41-53 (2000). [CrossRef]
  11. T. X. Phuoc, C. M. White, and D. H. McNeill, “Laser spark ignition of a jet diffusion flame,” Opt. Lasers Eng. 38, 217-232 (2002). [CrossRef]
  12. V. N. Rai, J. P. Singh, C. Winstead, F.-Y. Yueh, and R. L. Cook, “Laser-induced breakdown spectroscopy of hydrocarbon flame and rocket engine simulator plume,” AIAA J. 41, 2192-2199 (2003). [CrossRef]
  13. D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A. Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, “Optical and x-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures,” J. Phys. Chem. A 110, 12113-12120 (2006). [CrossRef] [PubMed]
  14. J. P. Davis, A. L. Smith, C. Giranda, and M. Squicciarini, “Laser-induced plasma formation in Xe, Ar, N2, and O2 at the first four Nd:YAG harmonics,” Appl. Opt. 30, 4358-4364 (1991). [CrossRef] [PubMed]
  15. R. A. Armstrong, R. A. Lucht, and W. T. Rawlins, “Spectroscopic investigation of laser-initiated low-pressure plasmas in atmospheric gases,” Appl. Opt. 22, 1573-1577 (1983). [CrossRef] [PubMed]
  16. C. V. Bindhu, S. S. Harilal, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Laser propagation and energy absorption by an Ar spark,” J. Appl. Phys. 94, 7402-7407 (2003). [CrossRef]
  17. N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45, 27-35 (2007). [CrossRef]
  18. G. Weyl, “Physics of laser-induced breakdown: an update,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, 1989), pp. 1-69.
  19. C. A. Henry, P. K. Diwakar, and D. W. Hahn, “Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: Analyte interactions and signal enhancement,” Spectrochim. Acta B 62, 1390-1398 (2007). [CrossRef]
  20. D. Miller, “Free jet sources,” in Atomic and Molecular Beam Methods, G. Scoles, ed. (Oxford U. Press, 1988), pp. 14-53.
  21. P.J.Linstrom and W.G.Mallard, eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology), http://webbook.nist.gov.
  22. F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006). [CrossRef]
  23. D. H. Plemmons, C. Parigger, J. W. L. Lewis, and J. O. Hornkohl, “Analysis of combined spectra of NH and N2,” Appl. Opt. 37, 2493-2498 (1998). [CrossRef]
  24. J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405-1411 (2007). [CrossRef]
  25. K. Beebe, R. Pell, and M. Seasholtz, Chemometrics: A Practical Guide (Wiley, 1998).
  26. M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003). [CrossRef]
  27. R Development Core Team, R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2009).
  28. B. Mevik and R. Wehrens, “The pls package: Principal component and partial least squares regression in R,” J. Stat. Softw. 18, 1-24 (2007).
  29. J. J. Remus, J. L. Gottfried, R. S. Harmon, A. Draucker, D. Baron, and R. Yohe, “Multivariate statistical analysis of LIBS spectra for archaeological applications--an example from the Coso Volcanic Field, CA--II: advanced statistical signal processing analysis,” NASLIBS 2009 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited