OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 14 — May. 10, 2010
  • pp: 2539–2546

Optical constants of crystalline Hf O 2 for energy range 140 930 eV

Elena Filatova, Andrey Sokolov, Jean-Michel André, Franz Schaefers, and Walter Braun  »View Author Affiliations


Applied Optics, Vol. 49, Issue 14, pp. 2539-2546 (2010)
http://dx.doi.org/10.1364/AO.49.002539


View Full Text Article

Enhanced HTML    Acrobat PDF (302 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We calculated the optical constants of the monoclinic phase of a Hf O 2 film from reflection spectra measured using synchrotron radiation in the spectral region from 143 eV to 927 eV , which includes the Hf N 4 , 5 , Hf N 2 , 3 , and OK absorption edges. The calculations were carried out using the Kramers– Kronig relations. It could be shown that the relation R ( E ) E 4 can be used for extrapolation of the experimental reflection spectrum of Hf O 2 (and probably of other heavy elements) for energies such that θ / θ c > 3.7 .

© 2010 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: December 4, 2009
Revised Manuscript: March 25, 2010
Manuscript Accepted: March 26, 2010
Published: May 4, 2010

Citation
Elena Filatova, Andrey Sokolov, Jean-Michel André, Franz Schaefers, and Walter Braun, "Optical constants of crystalline HfO2 for energy range 140–930 eV," Appl. Opt. 49, 2539-2546 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-14-2539


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-K gate dielectrics: current status and materials properties considerations,” J. Appl. Phys. 89, 5243–5275 (2001). [CrossRef]
  2. B. H. Lee, L. Kang, R. Nieh, W. J. Qi, and J. C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing,” Appl. Phys. Lett. 76, 1926–1928 (2000). [CrossRef]
  3. A. I. Kingon, J.-P. Maria, and S. K. Streiffer, “Alternative dielectrics to silicon dioxide for memory and logic devices,” Nature 406, 1032–1038 (2000). [CrossRef] [PubMed]
  4. V. V. Afanas’ev, A. Stesmans, F. Chen, X. Shi, and S. A. Campbell, “Internal photoemission of electrons and holes from (100)Si into HfO2,” Appl. Phys. Lett. 81, 1053–1055 (2002). [CrossRef]
  5. S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, and A. Rizo, “Physical characterization of hafnium oxide thin films and their application as gas sensing devices,” J. Vac. Sci. Technol. A 16, 3564–3568 (1998). [CrossRef]
  6. C. L. Platt, B. Dieny, and A. E. Berkowitz, “Spin-dependent tunneling in HfO2 tunnel junctions,” Appl. Phys. Lett. 69, 2291–2293 (1996). [CrossRef]
  7. M. L. Grilli, F. Menchini, A. Piegari, D. Alderighi, G. Toci, and M. Vannini, “Al2O3/SiO2 and HfO2/SiO2 dichroic mirrors for UV solid-state lasers,” Thin Solid Films 517, 1731–1735 (2009). [CrossRef]
  8. P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, and C. Amra, “High-reflectivity HfO2/SiO2 ultraviolet mirrors,” Appl. Opt. 41, 3256–3261 (2002). [CrossRef] [PubMed]
  9. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). [CrossRef]
  10. E.D.Palik, ed. Handbook of Optical Constants of Solids(Academic, 1997), Vols.  I, II, and III.
  11. E.D.Palik, ed. Electronic Handbook of Optical Constants of Solids (Academic, 1999).
  12. C. Jaeger, V. B. Il’in, T. Henning, H. Mutschke, D. Fabian, D. A. Semenov, and N. V. Voshchinnikov, “A database of optical constants of cosmic dust analogs,” J. Quant. Spectr. Rad. Trans. 79–80, 765–774 (2003). [CrossRef]
  13. E. Filatova, V. Lukyanov, R. Barchewitz, J.-M. Andŕe, M. Idir, and P. Stemmler, “Optical constants of amorphous SiO2 for photons in the range of 60–3000 eV,” J. Phys. Condens. Matter 11, 3355–3370 (1999). [CrossRef]
  14. J. S. Toll, “Causality and the dispersion relation: logical foundations,” Phys. Rev. 104, 1760–1770 (1956). [CrossRef]
  15. A. V. Vinogradov, N. N. Zorev, I. V. Kozhevnikov, S. I. Sagitov, and A. G. Turyanskii, “X-ray scattering by highly polished surfaces,” Sov. Phys. JETP 67, 1631–1638 (1988).
  16. M. Sheik-Bahae, “Nonlinear optics basics. Kramers–Kronig relations in nonlinear optics,” in Encyclopedia of Modern Optics, R.D.Guenther, ed. (Academic, 2005). [CrossRef]
  17. V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, 2005).
  18. F. W. King, Hilbert Transforms Set (Cambridge U. Press, 2009).
  19. E. O. Filatova, A. A. Sokolov, I. V. Kozhevnikov, E. Yu. Taracheva, O. S. Grunsky, F. Schaefers, and W. Braun, “Investigation of the structure of thin HfO2 films by soft x-ray reflectometry techniques,” J. Phys. Condens. Matter 21, 185012 (2009). [CrossRef] [PubMed]
  20. Reflectometer station, see http://www.bessy.de/upload/bitpdfs/reflectometer.pdf.
  21. Optics beamline, see http://www.bessy.de/upload/bitpdfs/D_08_1B2.pdf.
  22. E. O. Filatova, A. I. Stepanov, and V. A. Luk’yanov, “Dispersion of optical constants of amorphous SiO2 in the energy region between 50 and 900 eV,” Opt. Spectrosc. 81, 416–420 (1996).
  23. E. O. Filatova, V. Lukyanov, C. Blessing, and J. Friedrich, “Reflection spectra and optical constants of noncrystalline SiO2 in the soft x-ray region,” J. Electron Spectros. Relat. Phenomena 79, 63–66 (1996). [CrossRef]
  24. WebElements: the periodic table on the Web, http://www.webelements.com/.
  25. A. M. James and M. P. Lord, Macmillan’s Chemical and Physical Data (Macmillan, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited