OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 14 — May. 10, 2010
  • pp: 2566–2570

Synthesis and optical property of water-soluble ZnS:Cu quantum dots by use of thioglycolic acid

Wentao Zhang and Hong-Ro Lee  »View Author Affiliations


Applied Optics, Vol. 49, Issue 14, pp. 2566-2570 (2010)
http://dx.doi.org/10.1364/AO.49.002566


View Full Text Article

Enhanced HTML    Acrobat PDF (621 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For additional use in industry and biomedicine, water-soluble Cu 2 + -doped ZnS quantum dots (QDs) ( Zn S : Cu ) were synthesized with thioglycolic acid (TGA) as the stabilizer in aqueous solutions in air. The products were characterized by x-ray diffraction, ultraviolet–visible spectroscopy, transmission electron microscopy, and photoluminescence. The effect of Cu 2 + doping concentration and TGA / ( Zn + Cu ) molar ratio on crystal structures and the luminescent intensity of Zn S : Cu QDs have been investigated. As a result, The as-prepared Zn S : Cu QDs had diameters of 10 12 nm and a sphere monodisperse form that consists of Zn S : Cu nanoparticles of approximately 2 nm . The optimum Cu 2 + doping concentration and TGA / ( Zn + Cu ) molar ratio were obtained when the photoluminescent emission showed a maximum value.

© 2010 Optical Society of America

OCIS Codes
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(270.5585) Quantum optics : Quantum information and processing
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Quantum Optics

History
Original Manuscript: November 12, 2009
Revised Manuscript: March 26, 2010
Manuscript Accepted: April 11, 2010
Published: May 4, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Wentao Zhang and Hong-Ro Lee, "Synthesis and optical property of water-soluble ZnS:Cu quantum dots by use of thioglycolic acid," Appl. Opt. 49, 2566-2570 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-14-2566


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. C. Chen, A. B. Herhold, C. S. Johnson, and A. P. Alivisatos, “Size dependence of structural metastability in semiconductor nanocrystals,” Science 276, 398–401 (1997). [CrossRef] [PubMed]
  2. R. E. Bailey, A. M. Smith, and S. Nie, “Quantum dots in biology and medicine,” Physica E (Amsterdam) 25, 1–12 (2004). [CrossRef]
  3. A. Shavel, N. Gaponik, and A. Eychmüller, “Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment,” J. Phys. Chem. B 110, 19280–19284 (2006). [CrossRef] [PubMed]
  4. M. J. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998). [CrossRef] [PubMed]
  5. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005). [CrossRef] [PubMed]
  6. A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano. Lett. 4, 11–18 (2004). [CrossRef]
  7. N. Pradhan, D. Goorskey, J. Thessing, and X. Peng, “An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals,” J. Am. Chem. Soc. 127, 17586–17587 (2005). [CrossRef] [PubMed]
  8. S. S. Narayanan, S. S. Sinha, P. K. Verma, and S. K. Pal, “Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA,” Chem. Phys. Lett. 463, 160–165 (2008). [CrossRef]
  9. C. P. Huang, S. W. Liu, T. M. Chen, and Y. K. Li, “A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots,” Sens. Actuators B 130, 338–342 (2008). [CrossRef]
  10. J. J. Andrade, A. G. Brasil Jr., P. M. A. Farias, A. Fontes, and B. S. Santos, “Synthesis and characterization of blue emitting ZnSe quantum dots,” Microelectron. J. 40, 641–643 (2009). [CrossRef]
  11. N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano. Lett. 7, 312–317 (2007). [CrossRef] [PubMed]
  12. N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129, 3339–3347 (2007). [CrossRef] [PubMed]
  13. C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76, 1517–1520 (1996). [CrossRef] [PubMed]
  14. M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir–Blodgett nanoassemblies,” J. Phys. Chem. B 107, 13782–13787(2003). [CrossRef]
  15. S. A. Empedocles, D. J. Norris, and M. G. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett. 77, 3873–3876 (1996). [CrossRef] [PubMed]
  16. J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125, 12567–12575 (2003). [CrossRef] [PubMed]
  17. B. Geng, J. Ma, and F. Zhan, “A solution phase thermal decomposition molecule precursors route to ZnS:Cu2+ nanorods and their optical properties,” Mater. Chem. Phys. 113, 534–538(2009). [CrossRef]
  18. W. Q. Peng, G. W. Cong, S. C. Qu, and Z. G. Wang, “Synthesis and photoluminescence of ZnS:Cu nanoparticles,” Opt. Mater. 29, 313–317 (2006). [CrossRef]
  19. A. Datta, S. K. Panda, and S. Chaudhuri, “Phase transformation and optical properties of Cu-doped ZnS nanorods,” J. Solid State Chem. 181, 2332–2337 (2008). [CrossRef]
  20. H. Li, Y. Zhang, X. Wang, and Z. Gao, “A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots,” Microchim. Acta 160, 119–123 (2008). [CrossRef]
  21. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sunder, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein,” J. Am. Chem. Soc. 122, 12142–12150(2000). [CrossRef]
  22. D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, “Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency,” J. Am. Chem. Soc. 124, 5782–5790 (2002). [CrossRef] [PubMed]
  23. Q. Xiao and C. Xiao, “Synthesis and photoluminescence of water-soluble Mn2+-doped ZnS quantum dots,” Appl. Surf. Sci. 254, 6432–6435 (2008). [CrossRef]
  24. H. Hu and W. Zhang, “Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles,” Opt. Mater. 28, 536–550 (2006). [CrossRef]
  25. H. P. Klong and L. F. Alexander, X-Ray Diffraction Procedures for Crystalline and Amorphous Materials (Wiley, 1954).
  26. J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+,” Nano. Lett. 1, 429–433 (2001). [CrossRef]
  27. E. Oliver, O. Andres, B. Miroslaw, W. Albrecht, and N. Thomas, “Synthesis and spectroscopic investigations of Cu-and Pb-doped colloidal ZnS nanocrystals,” J. Phys. Chem. B 110, 23175–23178 (2006). [CrossRef]
  28. M. Wang, L. Sun, X. Fu, C. Liao, and C. Yan, “Synthesis and optical properties of ZnS:Cu(II) nanoparticles,” Solid State Commun. 115, 493–496 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited