OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 14 — May. 10, 2010
  • pp: 2606–2616

Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica

Steven T. Yang, Manyalibo J. Matthews, Selim Elhadj, Diane Cooke, Gabriel M. Guss, Vaughn G. Draggoo, and Paul J. Wegner  »View Author Affiliations

Applied Optics, Vol. 49, Issue 14, pp. 2606-2616 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1078 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser-induced growth of optical damage can limit component lifetime and, therefore, increase operating costs of large-aperture fusion-class laser systems. While far-infrared (IR) lasers have been used previously to treat laser damage on fused silica optics and render it benign, little is known about the effectiveness of less-absorbing mid-IR lasers for this purpose. In this study, we quantitatively compare the effectiveness and efficiency of mid-IR ( 4.6 μm ) versus far-IR ( 10.6 μm ) lasers in mitigating damage growth on fused silica surfaces. The nonlinear volumetric heating due to mid-IR laser absorption is analyzed by solving the heat equation numerically, taking into account the temperature-dependent absorption coefficient α ( T ) at λ = 4.6 μm , while far-IR laser heating is well described by a linear analytic approximation to the laser-driven temperature rise. In both cases, the predicted results agree well with surface temperature measurements based on IR radiometry, as well as subsurface fictive temperature measurements based on confocal Raman microscopy. Damage mitigation efficiency is assessed using a figure of merit (FOM) relating the crack healing depth to laser power required, under minimally ablative conditions. Based on our FOM, we show that, for cracks up to at least 500 μm in depth, mitigation with a 4.6 μm mid-IR laser is more efficient than mitigation with a 10.6 μm far-IR laser. This conclusion is corroborated by direct application of each laser system to the mitigation of pulsed laser-induced damage possessing fractures up to 225 μm in depth.

© 2010 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3390) Lasers and laser optics : Laser materials processing
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(160.6030) Materials : Silica
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 18, 2010
Revised Manuscript: March 30, 2010
Manuscript Accepted: April 6, 2010
Published: May 4, 2010

Steven T. Yang, Manyalibo J. Matthews, Selim Elhadj, Diane Cooke, Gabriel M. Guss, Vaughn G. Draggoo, and Paul J. Wegner, "Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica," Appl. Opt. 49, 2606-2616 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Norton, L. W. Hrubesh, W. Zhouling, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–468 (2001). [CrossRef]
  2. L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23–33 (2002). [CrossRef]
  3. R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002). [CrossRef]
  4. I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser,” Proc. SPIE 6261, 62612A (2006). [CrossRef]
  5. I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005). [CrossRef]
  6. S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009). [CrossRef]
  7. M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007). [CrossRef]
  8. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45, 5358–5367 (2006). [CrossRef] [PubMed]
  9. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46, 8118–8133 (2007). [CrossRef] [PubMed]
  10. G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser,” Proc. SPIE 6403, 64030M (2006). [CrossRef]
  11. A. D. McLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused-silica for CO2-laser wavelengths,” Appl. Opt. 26, 1728–1731 (1987). [CrossRef] [PubMed]
  12. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106, 1031061–1031067 (2009).
  13. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, 1965), Eq. 4(116), p. 77.
  14. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, 2000).
  15. M. v. Allmen and A. Blatter, Laser-Beam Interactions with Materials, 2nd ed., Springer Series in Materials Science (Springer, 1995). [CrossRef]
  16. M. Mansuripur, G. A. N. Connell, and J. W. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21, 1106–1114 (1982). [CrossRef] [PubMed]
  17. S. Elhadj, M. J. Matthews, S. T. Yang, D. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96, 071110 –071112 (2010). [CrossRef]
  18. M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007). [CrossRef]
  19. Z. Jian, J. Sullivan, J. Zayac, and T. D. Bennett, “Structural modification of silica glass by laser scanning,” J. Appl. Phys. 95, 5475–5482 (2004). [CrossRef]
  20. M. J. Matthews, R. M. Vignes, D. Cooke, S. T. Yang, and J. S. Stolken, “Analysis of micro-structural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy,” Opt. Lett. 35, 1311–1313 (2010). [CrossRef] [PubMed]
  21. A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28, 3266–3271 (1983). [CrossRef]
  22. M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003). [CrossRef]
  23. R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92, 7619–7629 (2002). [CrossRef]
  24. N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41, 18–22 (1958). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited