OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 14 — May. 10, 2010
  • pp: 2617–2621

Multichannel probes for polarization-resolved scanning near-field optical microscopy

Thierry Grosjean, Idriss A. Ibrahim, and Mathieu Mivelle  »View Author Affiliations

Applied Optics, Vol. 49, Issue 14, pp. 2617-2621 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (314 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and validate a concept of multichannel near-field fiber probe for the collection and discrimination of optical fields of orthogonal polarizations (linear, elliptic, and circular). The system is achieved by connecting to scanning near-field optical microscope fiber tips an optical stage made up of commercial polarizers, fiber couplers, and polarization controllers. Using radially polarized Bessel beams as test objects, we demonstrate the ability of a three-channel fiber tip to simultaneously and independently probe the transverse vector components of the electric field (parallel to the sample surface) and the overall transverse intensity. The polarization ratio of the near-field collection system exceeds 1:1500. The system can be implemented in collection-mode or reflection-mode near-field microscope configurations, with various kinds of probe and light source (of high or low coherence lengths) for a deeper insight of light polarization effects and vector fields at a subwavelength scale.

© 2010 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: March 10, 2010
Manuscript Accepted: April 11, 2010
Published: May 4, 2010

Thierry Grosjean, Idriss A. Ibrahim, and Mathieu Mivelle, "Multichannel probes for polarization-resolved scanning near-field optical microscopy," Appl. Opt. 49, 2617-2621 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984). [CrossRef]
  2. U. Fischer, U. T. Du¨rig, and D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988). [CrossRef]
  3. D. Courjon, K. Sarayeddine, and M. Spajer, “Scanneling tunneling optical microscopy,” Opt. Commun. 71, 23–28(1989). [CrossRef]
  4. R. Bachelot, P. Gleyzes, and A. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995). [CrossRef] [PubMed]
  5. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992). [CrossRef] [PubMed]
  6. S. Bozhevolnyi, M. Xiao, and O. Keller, “External-reflection near-field optical microscope with cross-polarized detection,” Appl. Opt. 33, 876–880 (1994). [CrossRef] [PubMed]
  7. C. Adelmann, J. Hetzler, G. Scheiber, T. Schimmel, M. Wegener, H. B. Weber, and H. von Löhneysen, “Experiments on the depolarization near-field scanning optical microscope,” Appl. Phys. Lett. 74, 179–181 (1999). [CrossRef]
  8. E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. Kryde, and C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992). [CrossRef]
  9. T. Lacoste, T. Huser, R. Prioli, and H. Heinzelmann, “Contrast enhancement using polarization-modulation scanning near-field optical microscopy (PM-SNOM),” Ultramicroscopy 71, 333–340 (1998). [CrossRef]
  10. L. Ramoino, M. Labardi, N. Maghelli, L. Pardi, M. Allegrini, and S. Patane, “Polarization-modulation near-field optical microscope for quantitative local dichroism mapping,” Rev. Sci. Instrum. 73, 2051–2056 (2002). [CrossRef]
  11. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553(2009). [CrossRef] [PubMed]
  12. S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009). [CrossRef]
  13. T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: effect on image structure,” Phys. Rev. E 67, 046611 (2003). [CrossRef]
  14. T. Grosjean, M. Mivelle, and G. Burr, “Polarization-dependent extraction properties of bare fiber probes,” Opt. Lett. 35, 357–359 (2010). [CrossRef] [PubMed]
  15. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. C. des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007). [CrossRef] [PubMed]
  16. E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006). [CrossRef]
  17. L. Novotny, M. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001). [CrossRef] [PubMed]
  18. T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. (Oxford) 229, 354–364 (2008). [CrossRef]
  19. T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun. 252, 12–21 (2005). [CrossRef]
  20. R. Herman and T. Wiggins, “Production and Uses of Diffractionless Beams,” J. Opt. Soc. Am. A 8 (6), 932–942 (1991). [CrossRef]
  21. Z. Bouchal and M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42 (8), 1555–1566 (1995). [CrossRef]
  22. T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46, 8061–8067 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited