OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 14 — May. 10, 2010
  • pp: 2720–2727

Horizontal magnification of finite-sized celestial objects

Sergey N. Kivalov and Andrew T. Young  »View Author Affiliations


Applied Optics, Vol. 49, Issue 14, pp. 2720-2727 (2010)
http://dx.doi.org/10.1364/AO.49.002720


View Full Text Article

Enhanced HTML    Acrobat PDF (414 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the magnification due to refraction of the apparent horizontal sizes of finite celestial bodies, such as the Sun or Moon. Two models are discussed and compared with the earlier works of Biot and Chauvenet. It is shown that the apparent horizontal size of the object varies with respect to its true horizontal size as a function of altitude or zenith distance, from a reduction of about 0.0276% at the zenith, to an amplification of about 0.0045% when the object appears just at the horizon (namely, when the true altitude γ is negative and related to the corresponding refraction R by γ = R ). It is also shown that the apparent horizontal size is equal to the true size when the true altitude γ is related to the corresponding refraction R by γ = R / 2 . Thus, the total magnification (and reduction) range for differently sized objects is about 0.032%–0.033% and depends on the refraction.

© 2010 Optical Society of America

OCIS Codes
(000.3870) General : Mathematics
(000.4430) General : Numerical approximation and analysis
(010.1290) Atmospheric and oceanic optics : Atmospheric optics

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 1, 2010
Revised Manuscript: March 31, 2010
Manuscript Accepted: April 1, 2010
Published: May 7, 2010

Citation
Sergey N. Kivalov and Andrew T. Young, "Horizontal magnification of finite-sized celestial objects," Appl. Opt. 49, 2720-2727 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-14-2720


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. D. Cassini, Ephemerides Novissimæ Motuum Coelestium Marchionis Cornelii Malvasiæ (ex typographia Andreæ Cassiani, Mvtinæ impensis avthoris, 1662).
  2. B. Oriani, “De refractionibus astronomicis,” in Ephemerides astronomicae anni 1788: Appendix ad ephemerides Anni 1788 (Appresso Giuseppe Galeazzi, 1787), pp. 164–277.
  3. H. Atkinson, “On astronomical and other refractions; with a connected Inquiry into the law of temperature in different latitudes and at different altitudes,” Mem. R. Astronom. Soc. 2, 137–260 (1826).
  4. H. Atkinson, “On the fluctuations of the atmosphere near the earth’s surface; and On the effect of such fluctuations upon the refraction at the horizon, and at very low altitudes, especially on the dip of the horizon at sea,” Mon. Not. R. Astronom. Soc. 1, 192–193 (1830).
  5. H. Atkinson, “Of the fluctuations of the atmosphere near the earth’s surface; and of their effects upon the refraction at very low altitudes. With an appendix on the dip of the horizon,” Mem. R. Astronom. Soc. 4, 517–530 (1831).
  6. J. B. Biot, “Sur les réfractions astronomiques,” Additions a la Connaissance des Tems 1839, 3–114 (1836).
  7. A. T. Young, “Sunset science. IV. Low-altitude refraction,” Astronom. J. 127, 3622–3637 (2004). [CrossRef]
  8. A. T. Young, “Understanding astronomical refraction,” Observatory 126, 82–115 (2006).
  9. J. B. Biot, Traité Elementaire d’Astronomie Physique, Tome I (Bernard, 1810), p. 233.
  10. J. B. Biot, Traité Elementaire d’Astronomie Physique, Tome II (Bernard, 1811), pp. 558–560.
  11. R. Main, Practical and Spherical Astronomy (Deighton, Bell, 1863), pp. 137–138.
  12. W. Chauvenet, Manual of Spherical and Practical Astronomy (J. B. Lippincott, 1863), Vol.  I, pp. 187–188.
  13. C. Y. Hohenkerk and A. T. Sinclair, “The computation of angular atmospheric refraction at large zenith angles,” Nautical Almanac Office Tech. Note 63 (H. M. Nautical Almanac Office, Royal Greenwich Observatory, 1985).
  14. S. N. Kivalov, “Improved ray tracing air mass numbers model,” Appl. Opt. 46, 7091–7098 (2007). [CrossRef] [PubMed]
  15. L. Auer and E. M. Standish, Astronomical Refraction: Computational Method for all Zenith Angles (Yale University Astronomy Dept., 1979).
  16. L. Auer and E. M. Standish, “Astronomical refraction: computational method for all zenith angles,” Astronom. J. 119, 2472–2474 (2000). [CrossRef]
  17. A. T. Sinclair, “The effect of atmospheric refraction on laser ranging data,” Nautical Almanac Office Tech. Note 59 (H. M. Nautical Almanac Office, Royal Greenwich Observatory, 1982).
  18. United States Committee on Extension to the Standard Atmosphere, “U.S. standard atmosphere” (U.S. Government Printing Office, 1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited