OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 14 — May. 10, 2010
  • pp: 2728–2735

Analysis of calibration methods for direct emissivity measurements

Luis González-Fernández, Raúl B. Pérez-Sáez, Leire del Campo, and Manuel J. Tello  »View Author Affiliations

Applied Optics, Vol. 49, Issue 14, pp. 2728-2735 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (998 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze two important points related to the experimental emissivity measurements in this paper: the radiometer calibration accuracy and its stability to determine the required frequency of calibration. The usual two-temperature calibration method is compared to a more accurate method, which uses the measurement of blackbody radiation at several temperatures. Additionally, the suitability of the two- temperature method is studied as a function of the gap between both temperatures. Differences higher than 200 ° C are needed to obtain an acceptable calibration. The temporal stability of the calibration and the influence of the environmental conditions are also analyzed.

© 2010 Optical Society of America

OCIS Codes
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.2140) Spectroscopy : Emission
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6340) Spectroscopy : Spectroscopy, infrared
(290.6815) Scattering : Thermal emission

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: February 10, 2010
Revised Manuscript: April 14, 2010
Manuscript Accepted: April 14, 2010
Published: May 7, 2010

Luis González-Fernández, Raúl B. Pérez-Sáez, Leire del Campo, and Manuel J. Tello, "Analysis of calibration methods for direct emissivity measurements," Appl. Opt. 49, 2728-2735 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. del Campo, R. B. Pérez-Sáez, X. Esquisabel, I. Fernández, and M. J. Tello, “A new experimental device for infrared spectral directional emissivity measurements in a controlled environment,” Rev. Sci. Instrum. 77, 113111 (2006). [CrossRef]
  2. O. Rozenbaum, D. de Sousa Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70, 4020–4025 (1999). [CrossRef]
  3. R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998). [CrossRef]
  4. J. Ishii and A. Ono, “Uncertainty estimation for emissivity measurements near room temperature with a Fourier transform spectrometer,” Meas. Sci. Technol. 12, 2103–2112(2001). [CrossRef]
  5. R. B. Pérez-Sáez, L. del Campo, and M. J. Tello, “Analysis of the accuracy of the methods for the direct emissivity measurements,” Int. J. Thermophys. 29, 1141–1155 (2008). [CrossRef]
  6. R. Siegel and J. Howel, Thermal Radiation Heat Transfer, 4th ed. (Taylor & Francis, 2002).
  7. Ö. Staaf, C. G. Ribbing, and S. K. Anderson, “Temperature dependence of the band emittance for nongray bodies,” Appl. Opt. 35, 6120–6125 (1996). [CrossRef] [PubMed]
  8. D. B. Chase, “The sensitivity and limitations of condensed phase infrared spectroscopy,” Appl. Spectrosc. 35, 77–81(1981). [CrossRef]
  9. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with high-resolution interferometer sounder,” Appl. Opt. 27, 3210–3218 (1988). [CrossRef] [PubMed]
  10. F. J. DeBlase and S. Compton, “Infrared emission spectroscopy: a theoretical and experimental review,” Appl. Spectrosc. 45, 611–618 (1991). [CrossRef]
  11. E. Lindermeir, P. Haschberger, V. Tank, and H. Dietl, “Calibration of Fourier transform spectrometer using three blackbody sources,” Appl. Opt. 31, 4527–4533 (1992). [CrossRef] [PubMed]
  12. P. C. Dufour, N. L. Rowell, and A. G. Steele, “Fourier-transform radiation thermometry: measurements and uncertainties,” Appl. Opt. 37, 5923–5931 (1998). [CrossRef]
  13. J. Dai, X. Wang, and G. Yuan, “Fourier transform spectrometer for spectral emissivity measurements in the temperature range between 60 and 1500°C,” J. Phys. Conf. Ser. 13, 63–66 (2005). [CrossRef]
  14. A. Shimota, H. Kobayashi, and S. Kadokura, “Radiometric calibration for the airbone interferometric monitor for green house gases simulator,” Appl. Opt. 38, 571–576 (1999). [CrossRef]
  15. S. Clausen, “Measurement of spectral emissivity by a FT-IR spectrometer,” in Proceedings of the Symposium on Temperature and Thermal Measurements in Industry and Science, TEMPMEKO 2001, B.Fellmuth, J.Seidel, and G.Scholz, eds. (VDE VERLAG GmbH, 2001), pp. 259–264.
  16. C. Weddigen, C. E. Blom, and M. Höpfner, “Phase corrections for the emission sounder MIPAS-FT,” Appl. Opt. 32, 4586–4589(1993). [CrossRef] [PubMed]
  17. J. Schreiber, T. Blumenstock, and H. Fischer, “Effects of the self-emission of an IR Fourier-transform spectrometer on measured absorption spectra,” Appl. Opt. 35, 6203–6209 (1996). [CrossRef] [PubMed]
  18. J. Schreiber, T. Blumenstock, and F. Hase, “Application of a radiometric calibration method to lunar Fourier transform IR spectra by using a liquid-nitrogen-cooled high-emissivity blackbody,” Appl. Opt. 36, 8168–8172 (1997). [CrossRef]
  19. S. Clausen, A. Morgenstjerne, and O. Rathmann, “Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers,” Appl. Opt. 35, 5683–5691 (1996). [CrossRef] [PubMed]
  20. E. T. Kwor and S. Matteï, “Emissivity measurements for Nextel Velvet Coating 811-21 between 36°C and 82°C,” High Temp.—High Pressures 33, 551–556 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited