OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 15 — May. 20, 2010
  • pp: 2769–2777

Phase shift formulas in uniaxial media: an application to waveplates

Francisco E. Veiras, Liliana I. Perez, and María T. Garea  »View Author Affiliations

Applied Optics, Vol. 49, Issue 15, pp. 2769-2777 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (948 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The calculation of phase shift and optical path difference in birefringent media is related to a wide range of applications and devices. We obtain an explicit formula for the phase shift introduced by an anisotropic uniaxial plane-parallel plate with arbitrary orientation of the optical axis when the incident wave has an arbitrary direction. This allows us to calculate the phase shift introduced by waveplates when considering oblique incidence as well as optical axis misalignments. The expressions were obtained by using Maxwell’s equations and boundary conditions without any approximation. They can be applied both to single plane wave and space-limited beams.

© 2010 Optical Society of America

OCIS Codes
(220.4830) Optical design and fabrication : Systems design
(230.5440) Optical devices : Polarization-selective devices
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(350.5030) Other areas of optics : Phase

ToC Category:
Optical Design and Fabrication

Original Manuscript: November 9, 2009
Revised Manuscript: March 19, 2010
Manuscript Accepted: March 23, 2010
Published: May 12, 2010

Francisco E. Veiras, Liliana I. Perez, and María T. Garea, "Phase shift formulas in uniaxial media: an application to waveplates," Appl. Opt. 49, 2769-2777 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Avendaño-Alejo and M. Rosete-Aguilar, “Optical path difference in a plane-parallel uniaxial plate,” J. Opt. Soc. Am. A 23, 926–932 (2006). [CrossRef]
  2. D. Clarke, “Interference effects in single wave plates,” J. Opt. A: Pure Appl. Opt. 6, 1036–1040 (2004). [CrossRef]
  3. W. Q. Zhang, “New phase shift formulas and stability of waveplate in oblique incident beam,” Opt. Commun. 176, 9–15 (2000). [CrossRef]
  4. X. Zhu, “Explicit Jones transformation matrix for a tilted birefringent plate with its optic axis parallel to the plate surface,” Appl. Opt. 33, 3502–3506 (1994). [CrossRef] [PubMed]
  5. P. D. Hale and G. W. Day, “Stability of birefringent linear retarders (waveplates),” Appl. Opt. 27, 5146–5153 (1988). [CrossRef] [PubMed]
  6. S. Prunet, B. Journet, and G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999). [CrossRef]
  7. C. C. Tsai, H. C. Wei, C. H. Hsieh, J. S. Wu, C. E. Lin, and C. Chou, “Linear birefringence parameters determination of a multi-order wave plate via phase detection at large oblique incidence angles,” Opt. Commun. 281, 3036–3041 (2008). [CrossRef]
  8. M. C. Simon and K. V. Gottschalk, “Optical path in birefringent media and Fermat’s principle,” Pure Appl. Opt. 7, 1403–1410 (1998). [CrossRef]
  9. L. I. Perez and M. T. Garea, “Propagation of 2D and 3D Gaussian beams in an anisotropic uniaxial medium: vectorial and scalar treatment,” Optik (Jena) 111, 297–306 (2000).
  10. Meadowlark Optics Inc., “Sources of error in retarders and waveplates,” www.meadowlarkoptics.com/applicationNotes.
  11. Alphalas, www.alphalas.com/images/stories/products/polarization.
  12. E. Kubacki, CVI Laser (Melles Griot), “Waveplates offer precise control of polarization,” www.cvilaser.com/Common/PDFs/OLEreprintMar2005CVI.pdf.
  13. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  14. M. C. Simon and R. M. Echarri, “Ray tracing formulas for monoaxial optical components: vectorial formulation,” Appl. Opt. 25, 1935–1939 (1986). [CrossRef] [PubMed]
  15. L. I. Perez, M. T. Garea, and R. M. Echarri, “Isotropic-uniaxial crystal interfaces: negative refraction and backward wave phenomena,” Opt. Commun. 254, 10–18 (2005). [CrossRef]
  16. M. C. Simon, “Ray tracing formulas for monoaxial optical components,” Appl. Opt. 22, 354–360 (1983). [CrossRef] [PubMed]
  17. O. N. Stavroudis, “Ray-tracing formulas for uniaxial crystals,” J. Opt. Soc. Am. 52, 187–189 (1962). [CrossRef]
  18. M. Avendaño-Alejo and O. N. Stavroudis, “Huygens’s principle and rays in uniaxial anisotropic media. II. Crystal axis orientation arbitrary,” J. Opt. Soc. Am. A 19, 1674–1679 (2002). [CrossRef]
  19. M. C. Simon and K. V. Gottschalk, “Waves and rays in uniaxial birefringent crystals,” Optik (Jena) 118, 457–470 (2007).
  20. M. C. Simon, L. I. Perez, and F. E. Veiras, “Parallel beams and fans of rays in uniaxial crystals,” AIP Conf. Proc. 992, 714–719 (2008), . [CrossRef]
  21. F. E. Veiras and L. I. Perez, “Phase shift formulas for waveplates in oblique incidence,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDPA2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited