OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 15 — May. 20, 2010
  • pp: 2778–2783

Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths

Nicolas Fraval and Jean Louis de Bougrenet de la Tocnaye  »View Author Affiliations

Applied Optics, Vol. 49, Issue 15, pp. 2778-2783 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (751 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the design, fabrication, and characterization of modal liquid crystal lenses (MLCLs) with a symmetrical electrode structure using a resistive composite polymer, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS). We achieved MLCLs with shorter focal lengths (up to 1 cm ), shorter apertures (1 to 5 mm ), and lower aberrations compared to other MLCLs. We demonstrate a very uniform conductivity distribution in the PEDOT-PSS layers over a wide resistivity range ( 100 k Ω / sq 10 M Ω / sq ) combined with a symmetrical electrode structure, enabling us to manufacture MLCLs with short f-numbers, large depths of focus, and low aberrations.

© 2010 Optical Society of America

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(110.1085) Imaging systems : Adaptive imaging
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Optical Devices

Original Manuscript: December 22, 2009
Revised Manuscript: February 5, 2010
Manuscript Accepted: February 5, 2010
Published: May 12, 2010

Nicolas Fraval and Jean Louis de Bougrenet de la Tocnaye, "Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths," Appl. Opt. 49, 2778-2783 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Sato, “Liquid-crystal lens cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979). [CrossRef]
  2. L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000). [CrossRef]
  3. S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, “Focusing by electrical modulation of refraction in a liquid crystal cell,” Appl. Opt. 23, 278–289 (1984). [CrossRef] [PubMed]
  4. T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5, 1425 (1989). [CrossRef]
  5. T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. Lett. 30, 2110–2112 (1991). [CrossRef]
  6. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998). [CrossRef]
  7. G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Quantum Electron. 29, 256–260(1999). [CrossRef]
  8. G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29, 261–264 (1999). [CrossRef]
  9. P. J. W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” Proc. SPIE 5518, 136–143(2004). [CrossRef]
  10. M. Amberg, A. Oeder, S. Sinzinger, P. J. W. Hands, and G. D. Love, “Tuneable planar integrated optical systems,” Opt. Express 15, 10607–10614 (2007). [CrossRef] [PubMed]
  11. N. Fraval, P. Joffre, S. Formont, and J. Chazelas, “Electrically tunable liquid-crystal wave plate using quadripolar electrode configuration and transparent conductive polymer layers,” Appl. Opt. 48, 5301–5306 (2009). [CrossRef] [PubMed]
  12. C. Geuzaine, P. Dular, and W. Legros, “A general environment for the treatment of discrete problems and its application to coupled finite element and boundary integral methods,” IEEE Trans. Magn. 34, 3395–3398 (1998). [CrossRef]
  13. F. D. Pasquale, F. Fernandez, S. Day, and J. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2, 128–134 (1996). [CrossRef]
  14. M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6, 139–146 (1999). [CrossRef]
  15. M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000). [CrossRef]
  16. A. K. Kirby, P. J. W. Hands, and G. D. Love, “Liquid crystal multi-mode lenses and axicons based on electronic phase shift control,” Opt. Express 15, 13496–13501 (2007). [CrossRef] [PubMed]
  17. G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid-crystal fresnel lens,” Proc. SPIE 1168, 352 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited