OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 15 — May. 20, 2010
  • pp: 2858–2871

Characterization of fine resolution field spectrometers using solar Fraunhofer lines and atmospheric absorption features

Michele Meroni, Lorenzo Busetto, Luis Guanter, Sergio Cogliati, Giovanni Franco Crosta, Mirco Migliavacca, Cinzia Panigada, Micol Rossini, and Roberto Colombo  »View Author Affiliations


Applied Optics, Vol. 49, Issue 15, pp. 2858-2871 (2010)
http://dx.doi.org/10.1364/AO.49.002858


View Full Text Article

Enhanced HTML    Acrobat PDF (1760 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The accurate spectral characterization of high-resolution spectrometers is required for correctly computing, interpreting, and comparing radiance and reflectance spectra acquired at different times or by different instruments. In this paper, we describe an algorithm for the spectral characterization of field spectrometer data using sharp atmospheric or solar absorption features present in the measured data. The algorithm retrieves systematic shifts in channel position and actual full width at half-maximum (FWHM) of the instrument by comparing data acquired during standard field spectroscopy measurement operations with a reference irradiance spectrum modeled with the MODTRAN4 radiative transfer code. Measurements from four different field spectrometers with spectral resolutions ranging from 0.05 to 3.5 nm are processed and the results validated against laboratory calibration. An accurate retrieval of channel position and FWHM has been achieved, with an average error smaller than the instrument spectral sampling interval.

© 2010 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 25, 2010
Revised Manuscript: April 2, 2010
Manuscript Accepted: April 2, 2010
Published: May 14, 2010

Citation
Michele Meroni, Lorenzo Busetto, Luis Guanter, Sergio Cogliati, Giovanni Franco Crosta, Mirco Migliavacca, Cinzia Panigada, Micol Rossini, and Roberto Colombo, "Characterization of fine resolution field spectrometers using solar Fraunhofer lines and atmospheric absorption features," Appl. Opt. 49, 2858-2871 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-15-2858


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. H. Goetz, “Three decades of hyperspectral remote sensing of the Earth: a personal view,” Remote Sens. Environ. , 1, S5–S16 (2009). [CrossRef]
  2. M. E. Schaepman, S. L. Ustin, A. J. Plaza, T. H. Painter, J. Verrelst, and S. L. Liang, “Earth system science related imaging spectroscopy—an assessment,” Remote Sens. Environ. 113, S123–S137 (2009). [CrossRef]
  3. R. O. Green, “Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum,” Appl. Opt. 37, 683–690 (1998). [CrossRef]
  4. R. O. Green, B. E. Pavri, and T. G. Chrien, “On-orbit radiometric and spectral calibration characteristics of EO-1 Hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina,” IEEE Trans. Geosci. Remote Sens. 41, 1194–1203 (2003). [CrossRef]
  5. L. Guanter, K. Segl, B. Sang, L. Alonso, H. Kaufmann, and J. Moreno, “Scene-based spectral calibration assessment of high spectral resolution imaging spectrometers,” Opt. Express 17, 11594–11606 (2009). [CrossRef] [PubMed]
  6. S. L. Ustin, A. A. Gitelson, S. Jacquemoud, M. Schaepman, G. P. Asner, J. A. Gamon, and P. Zarco-Tejada, “Retrieval of foliar information about plant pigment systems from high resolution spectroscopy,” Remote Sens. Environ. 113, S67–S77 (2009). [CrossRef]
  7. J. A. Gamon, J. Penuelas, and C. B. Field, “A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency,” Remote Sens. Environ. 41, 35–44 (1992). [CrossRef]
  8. M. Meroni, M. Rossini, L. Guanter, L. Alonso, U. Rascher, R. Colombo, and J. Moreno, “Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications,” Remote Sens. Environ. 113, 2037–2051 (2009). [CrossRef]
  9. K. L. Castro-Esau, G. A. Sanchez-Azofeifa, and B. Rivard, “Comparison of spectral indices obtained using multiple spectroradiometers,” Remote Sens. Environ. 103, 276–288(2006). [CrossRef]
  10. J. A. Gamon, A. F. Rahman, J. L. Dungan, M. Schildhauer, and K. F. Huemmrich, “Spectral Network (SpecNet)—What is it and why do we need it?,” Remote Sens. Environ. 103, 227–235 (2006). [CrossRef]
  11. D. Baldocchi, “Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems,” Aust. J. Bot. 56, 1–26 (2008). [CrossRef]
  12. T. Hilker, N. C. Coops, Z. Nesic, M. A. Wulder, and A. T. Black, “Instrumentation and approach for unattended year round tower based measurements of spectral reflectance,” Comput. Electron. Agric. 56, 72–84 (2007). [CrossRef]
  13. L. Guanter, R. Richter, and J. Moreno, “Spectral calibration of hyperspectral imagery using atmospheric absorption features,” Appl. Opt. 45, 2360–2370 (2006). [CrossRef] [PubMed]
  14. S. Jacquemoud, W. Verhoef, F. Baret, C. Bacour, P. J. Zarco-Tejada, G. P. Asner, C. Francois, and S. L. Ustin, “PROSPECT plus SAIL models: a review of use for vegetation characterization,” Remote Sens. Environ. 113, S56–S66 (2009). [CrossRef]
  15. ASDI, FieldSpec UV/VNIR Spectroradiometer user’s guide, ftp://ftp.asdi.com (2003).
  16. D. Hatchel, ASD Technical Guide3rd ed. (Analytical Spectral Device, 1999).
  17. M. E. Schaepman and S. Dangel, “Solid laboratory calibration of a nonimaging spectroradiometer,” Appl. Opt. 39, 3754–3764(2000). [CrossRef]
  18. B. C. Gao, M. J. Montes, and C. O. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004). [CrossRef]
  19. L. Guanter, V. Estelles, and J. Moreno, “Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data,” Remote Sens. Environ. 109, 54–65 (2007). [CrossRef]
  20. R. A. Neville, L. X. Sun, and K. Staenz, “Spectral calibration of imaging spectrometers by atmospheric absorption feature matching,” Can. J. Remote Sens. 34, S29–S42 (2008). [CrossRef]
  21. J. Brazile, R. A. Neville, K. Staenz, D. Schlapfer, L. X. Sun, and K. I. Itten, “Toward scene-based retrieval of spectral response functions for hyperspectral imagers using Fraunhofer features,” Can. J. Remote Sens. 34, S43–S58 (2008). [CrossRef]
  22. E. J. Milton, M. E. Schaepman, K. Anderson, M. Kneubuhler, and N. Fox, “Progress in field spectroscopy,” Remote Sens. Environ. 113, S92–S109 (2009). [CrossRef]
  23. A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, and S. M. Adler-Golden, “MODTRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375(1998). [CrossRef]
  24. B. Edlen, “The refractive index of air,” Metrologia 2, 71–80(1966). [CrossRef]
  25. C. B. Markwardt, “TMIN function minimization,” http://cow.physics.wisc.edu/~craigm/idl/idl.html (2008).
  26. J. Reader, C. J. Sansonetti, and J. M. Bridges, “Irradiances of spectral lines in mercury pencil lamps,” Appl. Opt. 35, 78–83(1996). [CrossRef] [PubMed]
  27. M. E. Schaepman, “Calibration of a field spectroradiometer,” Dissertation Thesis, Vol. 31 Remote Sensing Series (Remote Sensing Laboratories, Department of Geography, University of Zürich, 1998).
  28. F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics 1, 80–83 (1945). [CrossRef]
  29. E. V. Thomas, “Non-parametric statistical methods for multivariate calibration model selection and comparison,” J. Chemom. 17, 653–659 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited