OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 15 — May. 20, 2010
  • pp: 2872–2878

Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics

Natan T. Shaked, Thomas M. Newpher, Michael D. Ehlers, and Adam Wax  »View Author Affiliations


Applied Optics, Vol. 49, Issue 15, pp. 2872-2878 (2010)
http://dx.doi.org/10.1364/AO.49.002872


View Full Text Article

Enhanced HTML    Acrobat PDF (515 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We apply a wide-field quantitative phase microscopy technique based on parallel two-step phase-shifting on-axis interferometry to visualize live biological cells and microorganism dynamics. The parallel on-axis holographic approach is more efficient with camera spatial bandwidth consumption compared to previous off-axis approaches and thus can capture finer sample spatial details, given a limited spatial bandwidth of a specific digital camera. Additionally, due to the parallel acquisition mechanism, the approach is suitable for visualizing rapid dynamic processes, permitting an interferometric acquisition rate equal to the camera frame rate. The method is demonstrated experimentally through phase microscopy of neurons and unicellular microorganisms.

© 2010 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.3170) Microscopy : Interference microscopy
(090.1995) Holography : Digital holography

ToC Category:
Microscopy

History
Original Manuscript: January 11, 2010
Revised Manuscript: March 11, 2010
Manuscript Accepted: April 19, 2010
Published: May 14, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Natan T. Shaked, Thomas M. Newpher, Michael D. Ehlers, and Adam Wax, "Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics," Appl. Opt. 49, 2872-2878 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-15-2872


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. H. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, “Fast and slow dynamics of the cytoskeleton,” Nat. Mater. 5, 636–640 (2006). [CrossRef] [PubMed]
  2. M. W. Barnett and P. M. Larkman, “The action potential,” Pract. Neurol. 7, 192–197 (2007). [PubMed]
  3. D. Bray, Cell Movements (Garland, 1992).
  4. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2505 (2004). [CrossRef] [PubMed]
  5. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005). [CrossRef] [PubMed]
  6. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34, 767–769 (2009). [CrossRef] [PubMed]
  7. N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15, 010505 (2010). [PubMed]
  8. C. P. Brophy, “Effect of intensity error correlation on the computed phase of phase-shifting interferometry,” J. Opt. Soc. Am. A 7, 537–541 (1990). [CrossRef]
  9. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45, 2995–3002 (2006). [CrossRef] [PubMed]
  10. A. Stern and B. Javidi, “Space-bandwidth conditions for efficient phase-shifting digital holographic microscopy,” J. Opt. Soc. Am. A 25, 736–741 (2008). [CrossRef]
  11. P. Guo and A. J. Devaney, “Digital microscopy using phase-shifting digital holography with two reference waves,” Opt. Lett. 29, 857–859 (2004). [CrossRef] [PubMed]
  12. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006). [CrossRef] [PubMed]
  13. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183–D189(2008). [CrossRef] [PubMed]
  14. J.-P. Liu and T.-C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34, 250–252(2009). [CrossRef] [PubMed]
  15. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003). [CrossRef] [PubMed]
  16. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized camera bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009). [CrossRef] [PubMed]
  17. M. D. Ehlers, “Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting,” Neuron 28, 511–525 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (3144 KB)      QuickTime
» Media 2: AVI (12512 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited