OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 15 — May. 20, 2010
  • pp: 2891–2897

Spectroscopy of Be Al 2 O 4 : Cr 3 + with application to high-temperature sensing

Devin Pugh-Thomas, Brian M. Walsh, and Mool C. Gupta  »View Author Affiliations

Applied Optics, Vol. 49, Issue 15, pp. 2891-2897 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (837 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Characterization of absorption, emission, and temperature-dependent luminescent features is of signi ficant interest for the development of optical temperature sensors and photonic devices. In this work, we conduct a comprehensive study to evaluate the orientation axis-dependent absorption and emission cross sections of Cr 3 + ions in Be Al 2 O 4 . In addition, we present new data for the temperature-dependent Stark-level energies for alexandrite. Laser-induced temperature-dependent luminescence data from 300 520 K on the R-line transitions are presented for application to high-temperature sensing.

© 2010 Optical Society of America

OCIS Codes
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(140.6810) Lasers and laser optics : Thermal effects
(300.1030) Spectroscopy : Absorption
(300.2530) Spectroscopy : Fluorescence, laser-induced
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 10, 2010
Revised Manuscript: April 13, 2010
Manuscript Accepted: April 15, 2010
Published: May 17, 2010

Devin Pugh-Thomas, Brian M. Walsh, and Mool C. Gupta, "Spectroscopy of BeAl2O4:Cr3+ with application to high-temperature sensing," Appl. Opt. 49, 2891-2897 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors 8, 5673–5744 (2008). [CrossRef]
  2. M. McSherry, C. Fitzpatrick, and E. Lewis, “Review of luminescent based fiber optic temperature sensors,” Sensor Rev. 25, 56–62 (2005). [CrossRef]
  3. H. C. Seat, J. H. Sharp, Z. Y. Zhang, and K. T. V. Grattan, “Single-crystal ruby fiber temperature sensor,” Sens. Actuators A, Phys. 101, 24–29 (2002). [CrossRef]
  4. H. Aizawa, H. Uchiyama, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fiber-optic thermometer using sensor materials with long fluorescence lifetime,” Meas. Sci. Technol. 15, 1484–1489 (2004).
  5. A. T. Augousti, K. T. V. Grattan, and A. W. Palmer, “A laser-pumped temperature sensor using the fluorescent decay time of alexandrite,” J. Lightwave Technol. 5, 759–762(1987). [CrossRef]
  6. Z. Zhang, G. T. V. Grattan, and A. W. Palmer, “Fiber-optic high-temperature sensor based on the fluorescence lifetime of alexandrite,” Rev. Sci. Instrum. 63, 3869–3873(1992). [CrossRef]
  7. J. C. Walling, O. G. Peterson, H. P. Jenssen, and R. C. Morris, “Tunable alexandrite lasers,” IEEE J. Quant. Electron. 16, 1302–1314 (1980). [CrossRef]
  8. R. C. Powell, L. Xi, X. Gang, and G. J. Quarles, “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B 32, 2788–2797 (1985). [CrossRef]
  9. R. M. Scalvi, M. S. Li, and L. V. A. Scalvi, “Annealing effects on optical properties of natural alexandrite,” J. Phys. Condens. Matter 15, 7437–7443 (2003). [CrossRef]
  10. SRS/Cd2A program written by coauthor B. M. Walsh.
  11. N. P. Barnes, “Solid-state lasers from an efficiency perspective,” IEEE J. Quant. Electron. 13, 435–447 (2007). [CrossRef]
  12. http://www.as.northropgrumman.com/products.synoptics_alexandrite/assets/Alexandrite.
  13. S. Watanabe, T. Sasaki, R. Taniguchi, T. Ishii, and K. Ogasawara, “First principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation,” Phys. Rev. B. 79, 075109 (2009). [CrossRef]
  14. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev 136, A954–A957(1964). [CrossRef]
  15. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids; application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998). [CrossRef]
  16. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kray, and W. P. Krupke, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992). [CrossRef]
  17. W. J. Miniscalco and R. S. Quimbly, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260(1991). [CrossRef] [PubMed]
  18. M. L. Shand and H. P. Jenssen, “Temperature dependence of the excited-state absorption of alexandrite,” IEEE J. Quant. Electron. 19, 480–484 (1983). [CrossRef]
  19. M. L. Shand, “Quantum efficiency of alexandrite,” J. Appl. Phys. 54, 2602–2604 (1983). [CrossRef]
  20. B. Di Bartolo, Optical Interactions in Solids (Wiley, 1968).
  21. T. Sun, Z. Y. Yang, K. Y. V. Grattan, and A. W. Palmer, “Alexandrite-based optical temperature sensing: comparison of different fluorescence-based approaches,” in Proceedings of the 12th International Conference on Optical Fiber Sensors (Optical Society of America, 1997), Vol. 16.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited