OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 15 — May. 20, 2010
  • pp: 2903–2909

Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise

Xiangqian Jiang, Kaiwei Wang, Feng Gao, and Hussam Muhamedsalih  »View Author Affiliations

Applied Optics, Vol. 49, Issue 15, pp. 2903-2909 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (930 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a new optical interferometry system for fast areal surface measurement of microscale and nanoscale surfaces that are immune to environmental noise. Wavelength scanning interfero metry together with an acousto-optic tunable filtering technique is used to measure surfaces with large step heights. An active servo control system serves as a phase-compensating mechanism to eliminate the effects of environmental noise. The system can be used for online or in-process measurement on a shop floor. Measurement results from two step height standard samples and a structured surface of a semiconductor daughterboard are presented. In comparison with standard step height specimens, the system achieved nanometer measurement accuracy. The measurement results of the semiconductor daughterboard, under mechanical disturbance, showed that the system can withstand environmental noise.

© 2010 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 12, 2009
Revised Manuscript: March 26, 2010
Manuscript Accepted: April 17, 2010
Published: May 17, 2010

Xiangqian Jiang, Kaiwei Wang, Feng Gao, and Hussam Muhamedsalih, "Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise," Appl. Opt. 49, 2903-2909 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. W. Lyons, “Integration, interoperability, and information management: what are the key issues for nano-manufacturing?,” Proc. SPIE 6648, 66480D (2007).
  2. A. Siegel and G. Liftin, “Deutsche Agenda Optische Technologien fur das 21 Jarhundert, Lenkungskreis Optische Technologien fur des 21 Jarhundert” (2000).
  3. W. B. Lee, “Market trends and applications of ultra-precision freeform machining technology,” presented at the Workshop on Design and Fabrication of Freeform Optics for Photonics and Telecommunication Industries, Hong Kong, March 2005.
  4. H. Heeren and A. El-Fatatry, “Metrology and characterization for micro and nano technology,” presented at Design-for-Purpose Metrology Expert Workshop, Loughborough, UK, 19 May 2008.
  5. J. E. Millerd, N. J. Brock, J. B. Hayes, and J. C. Wyant, “Instantaneous phase-shift, point-diffraction interferometer,” Proc. SPIE 5531264–272 (2004). [CrossRef]
  6. C. Koliopoulos, “Simultaneous phase shift interferometer,” Proc. SPIE 1531, 119–127 (1991). [CrossRef]
  7. H. Kihm and S. Kim, “Fiber-diffraction interferometer for vibration desensitization,” Opt. Lett. 30, 2059–2061 (2005). [CrossRef] [PubMed]
  8. B. Ngoi, K. Venkatakrishnan, and N. Sivakumar, “Phase-shifting interferometry immune to vibration,” Appl. Opt. 40, 3211–3214 (2001). [CrossRef]
  9. M. North-Morris, J. VanDelden, and J. C. Wyant, “Phase-shifting birefringent scatterplate interferometer,” Appl. Opt. 41, 668–677 (2002). [CrossRef] [PubMed]
  10. J. Huang, T. Honda, N. Ohyama, and J. Tsuiiuchi, “Fringe scanning scatter plate interferometer using a polarized light,” Opt. Commun. 68, 235–238 (1988). [CrossRef]
  11. D. Su and L. Shyu, “Phase-shifting scatter plate interferometer using a polarization technique,” J. Mod. Opt. 38, 951–959 (1991). [CrossRef]
  12. G. S. Kino and S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990). [CrossRef] [PubMed]
  13. B. Bowe and V. Toal, “White light interferometric surface profiler,” Opt. Eng. 37, 1796–1799 (1998). [CrossRef]
  14. A. Hirai, K. Seta, and H. Matsumoto, “White-light interferometry using pseudo random-modulation for high-sensitivity and high-selectivity measurements,” Opt. Commun. 162, 11–15(1999). [CrossRef]
  15. T. Dresel, G. Hausler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992). [CrossRef] [PubMed]
  16. A. Hirai and H. Matsumoto, “High-sensitivity surface profile measurements by heterodyne white-light interferometer,” Opt. Eng. 40, 387–391 (2001). [CrossRef]
  17. G. Häusler, P. Ettl, M. Schenk, C. Bohn, and I. Laszlo, “Limits of optical range sensors and how to exploit them,” in International Trends in Optics and Photonics ICO IV, T.Asakura, ed., Vol. 74 of Springer Series in Optical Sciences (Springer-Verlag, 1999), pp. 328–342.
  18. M. Fleischer, R. Windecker, and H. J. Tiziani, “Theoretical limits of scanning white-light interferometry signal evaluation algorithms,” Appl. Opt. 40, 2815–2820 (2001). [CrossRef]
  19. S. Kuwamura and I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement microscope,” Appl. Opt. 36, 4473–4482 (1997). [CrossRef] [PubMed]
  20. A. Yamamoto, C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, and H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001). [CrossRef]
  21. A. Yamamoto and I. Yamaguchi, “Surface profilometry by wavelength scanning Fizeau interferometer,” Opt. Laser Technol. 32, 261–266 (2000). [CrossRef]
  22. A. Yamamoto and I. Yamaguchi, “Profilometry of sloped plane surfaces by wavelength scanning interferometry,” Opt. Rev. 9, 112–121 (2002). [CrossRef]
  23. I. Yamaguchi, A. Yamamoto, and M. Yano, “Surface topography by wavelength scanning interferometry,” Opt. Eng. 39, 40–46 (2000). [CrossRef]
  24. D. S. Mehta, S. Saito, H. Hinosugi, M. Takeda, and T. Kurokawa, “Spectral interference Mirau microscope with an acousto-optic tunable filter for three-dimensional surface profilometry,” Appl. Opt. 42, 1296–1305 (2003). [CrossRef] [PubMed]
  25. K. Hibino, B. F. Oreb, P. S. Fairman, and J. Burke, “Simultaneous measurement of surface shape and variation in optical thickness of a transparent parallel plate in wavelength-scanning Fizeau interferometer,” Appl. Opt. 43, 1241–1249(2004). [CrossRef] [PubMed]
  26. T. Anna, S. K. Dubey, C. Shakher, A. Roy, and D. S. Mehta, “Sinosoidal fringe projection system based on compact and non-mechanical scanning low-coherence Michelson interferometer for three-dimensional shape measurement,” Opt. Commun. 282, 1237–1242 (2009). [CrossRef]
  27. J. Schwider and L. Zhou, “Dispersive interferometric profilometer,” Opt. Lett. 19, 995–997 (1994). [CrossRef] [PubMed]
  28. P. Sandoz, G. Tribillon, and H. Perrin, “High-resolution profilometry by using phase calculation algorithms for spectroscopic analysis of white-light interferograms,” J. Mod. Opt. 43, 701–708 (1996). [CrossRef]
  29. U. Schnell, R. Dandliker, and S. Gray, “Dispersive white-light interferometry for absolute distance measurement with dielectric multilayer systems on the target,” Opt. Lett. 21, 528–530 (1996). [CrossRef] [PubMed]
  30. K. Joo and S. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14, 5954–5960 (2006). [CrossRef] [PubMed]
  31. P. Hlubina, “Dispersive white-light spectral interferometry to measure distances and displacements,” Opt. Commun. 212, 65–70 (2002). [CrossRef]
  32. E. Papastathopoulos, K. Koerner, and W. Osten, “Chromatic confocal spectral interferometry,” Appl. Opt. 45, 8244–8252(2006). [CrossRef] [PubMed]
  33. J. Hayes, “Dynamic interferometry handles vibration,” Laser Focus World 38(3), 109–113(2002).
  34. H. Martin, K. Wang, and X. Jiang, “Vibration compensating beam scanning interferometer for surface measurement,” Appl. Opt. 47, 888–893 (2008). [CrossRef] [PubMed]
  35. X. Jiang, K. Wang, and H. Martin, “Near common-path optical fiber interferometer for potentially fast on-line microscale–nanoscale surface measurement,” Opt. Lett. 31, 3603–3605(2006). [CrossRef] [PubMed]
  36. X. Dai and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031–1035(1998). [CrossRef]
  37. M. Takeda and H. Yamamoto, “Fourier-transform speckle profilometry: three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces,” Appl. Opt. 33, 7829–7837 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited