OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 15 — May. 20, 2010
  • pp: 2929–2946

First results from a dual photoelastic-modulator-based polarimetric camera

David J. Diner, Ab Davis, Bruce Hancock, Sven Geier, Brian Rheingans, Veljko Jovanovic, Michael Bull, David M. Rider, Russell A. Chipman, Anna-Britt Mahler, and Stephen C. McClain  »View Author Affiliations

Applied Optics, Vol. 49, Issue 15, pp. 2929-2946 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1904 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the construction and calibration of a dual photoelastic-modulator (PEM)-based polarimetric camera operating at 660 nm . This camera is our first prototype for a multispectral system being developed for airborne and spaceborne remote sensing of atmospheric aerosols. The camera includes a dual-PEM assembly integrated into a three-element, low-polarization reflective telescope and provides both intensity and polarization imaging. A miniaturized focal-plane assembly consisting of spectral filters and patterned wire-grid polarizers provides wavelength and polarimetric selection. A custom push-broom detector array with specialized signal acquisition, readout, and processing electronics captures the radiometric and polarimetric information. Focal-plane polarizers at orientations of 0 ° and 45 ° yield the normalized Stokes parameters q = Q / I and u = U / I respectively, which are then coregistered to obtain degree of linear polarization (DOLP) and angle of linear polarization. Laboratory test data, calibration results, and outdoor imagery acquired with the camera are presented. The results show that, over a wide range of DOLP, our challenging objective of uncertainty within ± 0.005 has been achieved.

© 2010 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.4110) Optical devices : Modulators
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Optical Devices

Original Manuscript: February 22, 2010
Revised Manuscript: April 23, 2010
Manuscript Accepted: April 23, 2010
Published: May 19, 2010

David J. Diner, Ab Davis, Bruce Hancock, Sven Geier, Brian Rheingans, Veljko Jovanovic, Michael Bull, David M. Rider, Russell A. Chipman, Anna-Britt Mahler, and Stephen C. McClain, "First results from a dual photoelastic-modulator-based polarimetric camera," Appl. Opt. 49, 2929-2946 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R. R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62, 947–973 (2005). [CrossRef]
  2. O. TorresP. K. Bhartia, J. R. Herman, A. Syniuk, P. Ginoux, and B. Holben, “A long term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements,” J. Atmos. Sci. 59, 398–413 (2002). [CrossRef]
  3. O. Torres, A. Tanskanen, B. Veihelmann, C. Ahn, R. Braak, P. K. Bhartia, P. Veefkind, and P. Levelt, “Aerosols and surface UV products from Ozone Monitoring Instrument observations: an overview,” J. Geophys. Res. 112, D24S47 (2007). [CrossRef]
  4. W. M. F. Grey, P. R. J. North, S. O. Los, and R. M. Mitchell, “Aerosol optical depth and land surface reflectance from multiangle AATSR measurements: global validation and intersensor comparisons,” IEEE Trans. Geosci. Remote Sens. 44, 2184–2197 (2006). [CrossRef]
  5. D. J. Diner, B. H. Braswell, R. Davies, N. Gobron, J. N. Hu, Y. F. Jin, R. A. Kahn, Y. Knyazikhin, N. Loeb, J.-P Muller, A. W. Nolin, B. Pinty, C. B. Schaaf, G. Seiz, and J. Stroeve, “The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces,” Remote Sens. Environ. 97, 495–518 (2005). [CrossRef]
  6. R. A. Kahn, B. J. Gaitley, J. V. Martonchik, D. J. Diner, K. A. Crean, and B. Holben, “Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations,” J. Geophys. Res. 110, D10S04 (2005). [CrossRef]
  7. O. Kalashnikova, R. Kahn, I. N. Sokolik, and W.-H Li, “Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: Optical models and retrievals of optically thick plumes,” J. Geophys. Res. 110, D18S14 (2005). [CrossRef]
  8. J. Chowdhary, B. Cairns, and L. D. Travis, “Case studies of aerosol retrievals over the ocean from multiangle, multispectral photopolarimetric remote sensing data,” J. Atmos. Sci. 59, 383–397 (2002). [CrossRef]
  9. M. Herman, J.-L Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005). [CrossRef]
  10. M. D. Lebsock, T. L’Ecuyer, and G. L. Stephens, “Information content of near-infrared spaceborne multiangular polarization measurements for aerosol retrievals,” J. Geophys. Res. 112, D14206 (2007). [CrossRef]
  11. F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114, D01206 (2009). [CrossRef]
  12. O. P. Hasekamp and J. Landgraf, “Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements,” Appl. Opt. 46, 3332–3344 (2007). [CrossRef] [PubMed]
  13. D. J. Diner, A. Davis, B. Hancock, G. Gutt, R. A. Chipman, and B. Cairns, “Dual photoelastic modulator-based polarimetric imaging concept for aerosol remote sensing,” Appl. Opt. 46, 8428–8445 (2007). [CrossRef] [PubMed]
  14. D. J. Diner, J. C. Beckert, T. H. Reilly, C. J. Bruegge, J. E. Conel, R. A. Kahn, J. V. Martonchik, T. P. Ackerman, R. Davies, S. A. W. Gerstl, H. R. Gordon, J.-P. Muller, R. B. Myneni, P. J. Sellers, B. Pinty, and M. Verstraete, “Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview,” IEEE Trans. Geosci. Remote Sens. 36, 1072–1087 (1998). [CrossRef]
  15. M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurement requirements,” J. Quant. Spectrosc. Radiat. Transfer 88, 149–161 (2004). [CrossRef]
  16. A. Mahler, P. K. Smith, and R. A. Chipman, “Low polarization optical system design,” Proc. SPIE 6682, 66820V (2007). [CrossRef]
  17. A. Mahler and R. Chipman, “Tolerancing and alignment of a three-mirror off-axis telescope,” Proc. SPIE 6676, 66760I(2007). [CrossRef]
  18. A. Mahler, N. A. Raouf, P. K. Smith, S. C. McClain, and R. A. Chipman, “Minimizing instrumental polarization in the Multiangle SpectroPolarimetric Imager (MSPI) using diattenuation balancing between the three mirror coatings,” Proc. SPIE 7013, 701355 (2008). [CrossRef]
  19. C. F. Bohren and D. R. Huffman,” Absorption and Scattering of Light by Small Particles. (Wiley, 1983).
  20. J. O. Stenflo, “Solar magnetic and velocity-field measurements: new instrument concepts,” Appl. Opt. 23, 1267–1278(1984). [CrossRef] [PubMed]
  21. A. F. Drake, “Polarisation modulation—the measurement of linear and circular dichroism,” J. Phys. E 19, 170–181 (1986). [CrossRef]
  22. C. U. Keller, “Instrumentation for astrophysical spectropolarimetry,” in Astrophysical Spectropolarimetry, J.Trujillo-Bueno, F.Moreno-Insertis, and F.Sánchez, eds. (Cambridge U. Press, 2002), pp. 303–354.
  23. M. Billardon and J. Badoz, “Modulateur de biréfringence,” C. R. Acad. Sci. Paris Ser. B 262, 1672–1675 (1966).
  24. L. F. Mollenauer, D. Downie, H. Engstrom, and W. B. Grant, “Stress plate optical modulator for circular dichroism measurements,” Appl. Opt. 8, 661–665 (1969). [CrossRef] [PubMed]
  25. J. C. Kemp, “Piezo-optical birefringence modulators: new use for a long-known effect,” J. Opt. Soc. Am. 59, 950–954(1969).
  26. S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. . 40, 761–767 (1969). [CrossRef]
  27. G. R. Boyer, B. F. Lamouroux, and B. S. Prade, “Automatic measurement of the Stokes vector of light,” Appl. Opt. 18, 1217–1219 (1979). [CrossRef] [PubMed]
  28. B. Wang, J. List, and R. R. Rockwell, “A Stokes polarimeter using two photoelastic modulators,” Proc. SPIE 4819, 1–8 (2002). [CrossRef]
  29. J. C. Kemp, “Photoelastic-modulator polarimeters in astronomy,” Proc. SPIE 307, 83–88 (1981).
  30. J. C. Kemp, G. H. Rieke, M. J. Lebofsky, and G. V. Coyne, “The infrared polarization of NGC 1275, NGC 4151, Markarian 231, and 3C 273,” Astrophys. J. 215, L107–L110 (1977). [CrossRef]
  31. N. L. Thomas and J. D. Wolfe, “UV-shifted silver coating for astronomical mirrors,” Proc. SPIE 4003, 312–323 (2000). [CrossRef]
  32. V. Jovanovic, B. Ledeboer, M. Smyth, and J. Zong, “Georectification of the Airborne Multi-angle Imaging SpectroRadiometer,” ISPRS Workshop on High Resolution Mapping from Space, Hannover, Germany, 2001.
  33. V. M. Jovanovic, M. A. Bull, M. M. Smyth, and J. Zong, “MISR in-flight camera geometric model calibration and georectification performance,” IEEE Trans. Geosci. Remote Sens. 40, 1512–1519 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited