OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 15 — May. 20, 2010
  • pp: 2954–2968

Sample-less calibration of the differential interference contrast microscope

Shalin B. Mehta and Colin J. R. Sheppard  »View Author Affiliations

Applied Optics, Vol. 49, Issue 15, pp. 2954-2968 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1076 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Analysis of image formation in a differential interference contrast (DIC) microscope and retrieval of the specimen’s properties require calibration of its key parameters, viz. shear and bias. We present a method of measuring the shear and the bias of a DIC microscope from the interference fringes produced in the back focal plane of the objective. Previous approaches, which use calibrated specimens such as polysty rene or fluorescent beads, provide rather approximate measurements of shear or require a complex optical setup. The method presented is accurate, relies on simple image analysis, and does not require a specimen. We provide a succinct and accurate description of properties of Nomarski prisms to explain the rationale behind the method.

© 2010 Optical Society of America

OCIS Codes
(110.2960) Imaging systems : Image analysis
(110.2990) Imaging systems : Image formation theory
(110.4980) Imaging systems : Partial coherence in imaging
(180.3170) Microscopy : Interference microscopy

ToC Category:

Original Manuscript: January 11, 2010
Revised Manuscript: April 8, 2010
Manuscript Accepted: April 9, 2010
Published: May 19, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Shalin B. Mehta and Colin J. R. Sheppard, "Sample-less calibration of the differential interference contrast microscope," Appl. Opt. 49, 2954-2968 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Nomarski, “Interference polarizing device for study of phase objects,” U.S. patent 2924142 (9 February 1960).
  2. M. Pluta, Advanced Light Microscopy. Vol. 2. Specialized Methods (PWN-Polish Scientific, 1989).
  3. C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE 2984, 72–81 (1997). [CrossRef]
  4. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12(2004). [CrossRef] [PubMed]
  5. B. Kouskousis, D. J. Kitcher, S. Collins, A. Roberts, and G. W. Baxter, “Quantitative phase and refractive index analysis of optical fibers using differential interference contrast microscopy,” Appl. Opt. 47, 5182–5189 (2008). [CrossRef] [PubMed]
  6. C. Preza, S. V. King, J. Conchello, C. J. Cogswell, and T. Wilson, “Algorithms for extracting true phase from rotationally-diverse and phase-shifted DIC images,” Proc. SPIE 6090, 60900E (2006). [CrossRef]
  7. M. Shribak, J. La Fountain, D. Biggs, and S. Inoue, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13, 014011 (2008). [CrossRef] [PubMed]
  8. S. B. Mehta and C. J. R. Sheppard, “Partially coherent image formation in differential interference contrast (DIC) microscope,” Opt. Express 16, 19462–19479 (2008). [CrossRef] [PubMed]
  9. W. Galbraith, “The image of a point of light in differential interference contrast microscopy: computer simulation,” Microscopica acta 85, 233–254 (1982).
  10. T. J. Holmes and W. J. Levy, “Signal-processing characteristics of differential-interference-contrast microscopy,” Appl. Opt. 26, 3929–3939 (1987). [CrossRef] [PubMed]
  11. E. B. van Munster, L. J. van Vilet, and J. A. Aten, “Reconstruction of optical path length distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188, 149–157 (1997). [CrossRef]
  12. P. Munro and P. Török, “Vectorial, high numerical aperture study of Nomarski’s differential interference contrast microscope,” Opt. Express 13, 6833–6847 (2005). [CrossRef] [PubMed]
  13. H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London Ser. A 217, 408–432 (1953). [CrossRef]
  14. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscope (Academic, 1984).
  15. C. J. R. Sheppard and T. Wilson, “Fourier imaging of phase information in scanning and conventional optical microscopes,” Phil. Trans. R. Soc. London Ser. A 295, 513–536(1980). [CrossRef]
  16. C. Cogswell and C. Sheppard, “Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,” J. Microsc. 165, 81–101 (1992). [CrossRef]
  17. C. Preza, D. L. Snyder, and J. Conchello, “Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy,” J. Opt. Soc. Am. A 16, 2185–2199 (1999). [CrossRef]
  18. S. B. Mehta and C. J. R. Sheppard, “Phase-space representation of partially coherent imaging systems using the Cohen class distribution,” Opt. Lett. 35, 348–350 (2010). [CrossRef] [PubMed]
  19. S. B. Mehta and C. J. R. Sheppard, “Using the phase-space imager to analyze partially coherent imaging systems: brightfield, phase-contrast, differential interference contrast, differential phase contrast, and spiral phase contrast,” J. Mod. Opt. (to be published).
  20. C. B. Müller , K. Weiß, W. Richtering, A. Loman, and J. Enderlein, “Calibrating differential interference contrast microscopy with dual-focus fluorescence correlation spectroscopy,” Opt. Express 16, 4322–4329 (2008). [CrossRef] [PubMed]
  21. R. Danz, A. Vogelgsang, and R. Kathner, “PlasDIC—a useful modification of the differential interference contrast according to Smith/Nomarski in transmitted light arrangement,” Photonik 1, 42 (2004).
  22. T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Differential interference contrast imaging using a spatial light modulator,” Opt. Lett. 34, 2988–2990 (2009). [CrossRef] [PubMed]
  23. M. Pluta, “Principles and basic properties,” in Advanced Light Microscopy (PWN-Polish Scientific Publishers, 1988), Vol. 1.
  24. P. Hariharan, “The Senarmont compensator: an early application of the geometric phase,” J. Mod. Opt. 40, 2061–2064(1993). [CrossRef]
  25. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  26. K. J. Dana, “Three dimensional reconstruction of the tectorial membrane: an image processing method using Nomarski differential interference contrast microscopy,” M.S. thesis (Massachusetts Institute of Technology, 1992).
  27. C. D. Kuglin and D. C. Hines, “The phase correlation image alignment method,” in Proceedings of the International Conference on Cybernetics and Society (IEEE, 1975), Vol. 4, pp. 163–165.
  28. P. Soille, Morphological Image Analysis: Principles and Applications (Springer-Verlag, 2003).
  29. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9, 62–66(1979). [CrossRef]
  30. C. C. Montarou and T. K. Gaylord, “Analysis and design of modified Wollaston prisms,” Appl. Opt. 38, 6604–6616 (1999). [CrossRef]
  31. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645(2006). [CrossRef] [PubMed]
  32. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793 (2006). [CrossRef] [PubMed]
  33. M. Françon, Optical Interferometry (Academic, 1966).
  34. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999). [PubMed]
  35. H. H. Hopkins, “The concept of partial coherence in optics,” Proc. R. Soc. London Ser. A 208, 263–277 (1951). [CrossRef]
  36. M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3749 KB)     
» Media 2: MOV (1427 KB)     
» Media 3: MOV (748 KB)     
» Media 4: MOV (1204 KB)     
» Media 5: MOV (1357 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited