OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 16 — Jun. 1, 2010
  • pp: 2969–2978

Design and analysis of broadband high-efficiency pulse compression gratings

Jianpeng Wang, Yunxia Jin, Jianyong Ma, Tianyu Sun, and Xufeng Jing  »View Author Affiliations

Applied Optics, Vol. 49, Issue 16, pp. 2969-2978 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1739 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on two effective methods, multiparameter optimization and local optimization combined with the diffraction bandwidth merit function, to design a broadband pulse compression grating (PCG), and we present broadband, high-efficiency PCGs based on both the multilayer dielectric grating (MDG) and metal-multilayer dielectric grating (MMDG) models. For MDG, the average diffraction efficiency is higher than 97.5% for TE polarization light over the 100 nm bandwidth centered at 800 nm . Moreover, a novel multilayer structure, which comprises higher index material in the high- reflectivity mirror and relatively lower index material on top, is first proposed to yield higher average efficiency, broader bandwidth, and excellent fabrication tolerance. For MMDG, it exhibits an ultra broadband top-hat diffraction spectrum with average efficiency exceeding 97% over the 200 nm wavelength wide centered at 1053 nm . In addition, the MMDG structure, which has the best tolerance for grating fabrication, is determined by investigating characteristics of MMDGs with different thin-film structures.

© 2010 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.2790) Integrated optics : Guided waves
(140.7090) Lasers and laser optics : Ultrafast lasers
(310.0310) Thin films : Thin films
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Diffraction and Gratings

Original Manuscript: February 5, 2010
Revised Manuscript: April 20, 2010
Manuscript Accepted: April 22, 2010
Published: May 20, 2010

Jianpeng Wang, Yunxia Jin, Jianyong Ma, Tianyu Sun, and Xufeng Jing, "Design and analysis of broadband high-efficiency pulse compression gratings," Appl. Opt. 49, 2969-2978 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985). [CrossRef]
  2. M. Pessot, J. Squier, G. Mourou, and D. J. Harter, “Chirped-pulse amplification of 100fsec pulses,” Opt. Lett. 14, 797–799 (1989). [CrossRef]
  3. A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994). [CrossRef]
  4. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995). [CrossRef]
  5. L. Li and J. Hirsh, “All-dielectric high-efficiency reflection gratings made with multilayer thin-film coatings,” Opt. Lett. 20, 1349–1351 (1995). [CrossRef]
  6. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14, 1124–1136 (1997). [CrossRef]
  7. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Befeld, W. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, “High-efficiency dielectric reflection gratings: design, fabrication, and analysis,” Appl. Opt. 38, 6257–6271(1999). [CrossRef]
  8. N. Destouches, A. V. Tishchenko, J. C. Pommier, S. Reynaud, and O. Parriaux, “99% efficiency measured in the −1st order of a resonant grating,” Opt. Express 13, 3230–3235(2005). [CrossRef]
  9. P. P. Lu, K. X. Sun, R. L. Byer, J. A. Britten, H. T. Nguyen, J. D. Nissen, C. C. Larson, M. D. Aasen, T. C. Carlson, and C. R. Hoaglan, “Precise diffraction efficiency measurements of large-area greater-than-99%-efficient dielectric gratings at the Littrow angle,” Opt. Lett. 34, 1708–1710 (2009). [CrossRef]
  10. I. Jovanovic, C. G. Brown, B. C. Stuart, W. A. Molander, N. D. Nielsen, B. F. Wattellier, J. A. Britten, D. M. Pennington, and C. P. J. Barty, “Precision damage tests of multilayer dielectric gratings for high-energy petawatt lasers,” Proc. SPIE 5647, 34–42 (2005). [CrossRef]
  11. S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun. 267, 50–57 (2006). [CrossRef]
  12. N. Bonod and J. Neauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun. 260, 649–655 (2006). [CrossRef]
  13. J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15, 12508–12522 (2007). [CrossRef]
  14. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  15. C. Wei, S. Liu, D. Deng, J. Shen, J. Shao, and Z. Fan, “Electric field enhancement in guided-mode resonance filters,” Opt. Lett. 31, 1223–1225 (2006). [CrossRef]
  16. N. Lyndin, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “Design and fabrication of an all-dielectric grating with top-hat high diffraction efficiency over a broad spectral range,” J. Euro. Opt. Soc. Rap. Public. 2, 07019 (2007). [CrossRef]
  17. F. Canova, R. Clady, J.-P. Chambaret, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression,” Opt. Express 15, 15324–15334(2007). [CrossRef]
  18. D. H. Martz, H. T. Nguyen, D. Patel, J. A. Britten, D. Alessi, E. Krous, Y. Wang, M. A. Larotonda, J. George, B. Knollenberg, B. M. Luther, J. J. Rocca, and C. S. Menoni, “Large area high efficiency broad bandwidth 800nm dielectric gratings for high energy laser pulse compression,” Opt. Express 17, 23809–23816 (2009). [CrossRef]
  19. J. Neauport and N. Bonod, “Pulse compression gratings for the PETAL project: a review of various technologies,” Proc. SPIE 7132, 71320D (2008). [CrossRef]
  20. S. Palmier, J. Neauport, N. Baclet, E. Lavastre, and G. Dupuy, “High reflection mirrors for pulse compression gratings,” Opt. Express 17, 20430–20439 (2009). [CrossRef]
  21. H. Wei and L. Li, “All-dielectric reflection gratings: a study of the physical mechanism for achieving high efficiency,” Appl. Opt. 42, 6255–6260 (2003). [CrossRef]
  22. M. Flury, A. V. Tishchenko, and O. Parriaux, “The leaky mode resonance condition ensures 100% diffraction efficiency of mirror-based resonant gratings,” J. Lightwave Technol. 25, 1870–1878 (2007). [CrossRef]
  23. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983). [CrossRef]
  24. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.
  25. M. Shokooh-Saremi and R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32, 894–896 (2007). [CrossRef]
  26. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).
  27. J. Wang, Y. Jin, J. Ma, J. Shao, and Z. Fan, “Study on the guided-mode resonance characteristic of multilayer dielectric gratings with broadband and wide using-angle,” Chin. Phys. B 19, 054202 (2010).
  28. J. Wang, Y. Jin, J. Shao, and Z. Fan, “Optimization design of an ultra-broad band, high-efficiency all-dielectric grating,” Opt. Lett. 35, 187–189 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited