OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 16 — Jun. 1, 2010
  • pp: 3025–3034

Design of temperature-independent arrayed waveguide gratings based on the combination of multiple types of waveguide

Huamao Huang, Seng-Tiong Ho, Dexiu Huang, Yongming Tu, and Wen Liu  »View Author Affiliations

Applied Optics, Vol. 49, Issue 16, pp. 3025-3034 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (884 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a design theory for a temperature-independent arrayed waveguide grating (TI-AWG) based on the combination of multiple types of waveguide. Each type of waveguide has a path-length difference between adjacent arrayed waveguides, and the path-length difference ratio is introduced as tuning parameter. A TI-AWG with Si wire and slot waveguides is given as an example. The thermal spectra shift of the TI-AWG can be tuned from redshift to blueshift in an ultralarge range, and the modified interference order can be reduced or enhanced. The device size is about one-fifth that of the narrow–wide-wire design that uses a combination of narrow and wide Si wire waveguides. The results are verified by the simulation of prototype devices via a two-dimensional finite-difference time-domain program.

© 2010 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(230.3120) Optical devices : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: February 12, 2010
Revised Manuscript: April 17, 2010
Manuscript Accepted: May 4, 2010
Published: May 24, 2010

Huamao Huang, Seng-Tiong Ho, Dexiu Huang, Yongming Tu, and Wen Liu, "Design of temperature-independent arrayed waveguide gratings based on the combination of multiple types of waveguide," Appl. Opt. 49, 3025-3034 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kamei, “Recent progress on athermal AWG wavelength multiplexer,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO1.
  2. S. Kamei, Y. Inoue, A. Kaneko, T. Shibata, and H. Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE 6014, 60140H (2005). [CrossRef]
  3. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006). [CrossRef]
  4. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005). [CrossRef]
  5. D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006). [CrossRef]
  6. J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol. 25, 2236–2243 (2007). [CrossRef]
  7. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20, 885–887 (2008). [CrossRef]
  8. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633(2009). [CrossRef] [PubMed]
  9. C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009). [CrossRef]
  10. J.-M. Lee, D.-J. Kim, G.-H. Kim, O. K. Kwon, K.-J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645–1652(2008). [CrossRef] [PubMed]
  11. L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21, 1175–1177 (2009). [CrossRef]
  12. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef] [PubMed]
  13. X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Li, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” Opt. Commun. 282, 2841–2844 (2009). [CrossRef]
  14. M. Uenuma and T. Motooka, “Design of a temperature-independent arrayed waveguide grating on SOI substrates,” in 4th IEEE International Conference Group IV Photonics, 2007 (IEEE, 2007), pp. 1–3.
  15. M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599–601(2009). [CrossRef] [PubMed]
  16. O. M. Matos, M. L. Calvo, P. Cheben, S. Janz, J. A. Rodrigo, D. X. Xu, and A. Delage, “Arrayed waveguide grating based on group-index modification,” J. Lightwave Technol. 24, 1551–1557 (2006). [CrossRef]
  17. Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34, 1498–1500 (2009). [CrossRef] [PubMed]
  18. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45, 6658–6662 (2006). [CrossRef]
  19. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited