OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 16 — Jun. 1, 2010
  • pp: 3082–3091

In-flight spectral performance monitoring of the Airborne Prism Experiment

Petra D’Odorico, Edoardo Alberti, and Michael E. Schaepman  »View Author Affiliations


Applied Optics, Vol. 49, Issue 16, pp. 3082-3091 (2010)
http://dx.doi.org/10.1364/AO.49.003082


View Full Text Article

Enhanced HTML    Acrobat PDF (1004 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectral performance of an airborne dispersive pushbroom imaging spectrometer cannot be assumed to be stable over a whole flight season given the environmental stresses present during flight. Spectral performance monitoring during flight is commonly accomplished by looking at selected absorption features present in the Sun, atmosphere, or ground, and their stability. The assessment of instrument performance in two different environments, e.g., laboratory and airborne, using precisely the same calibration reference, has not been possible so far. The Airborne Prism Experiment (APEX), an airborne dispersive pushbroom imaging spectrometer, uses an onboard in-flight characterization (IFC) facility, which makes it possible to monitor the sensor’s performance in terms of spectral, radiometric, and geometric stability in flight and in the laboratory. We discuss in detail a new method for the monitoring of spectral instrument performance. The method relies on the monitoring of spectral shifts by comparing instrument-induced movements of absorption features on ground and in flight. Absorption lines originate from spectral filters, which intercept the full field of view (FOV) illuminated using an internal light source. A feature-fitting algorithm is used for the shift estimation based on Pearson’s correlation co efficient. Environmental parameter monitoring, coregistered on board with the image and calibration data, revealed that differential pressure and temperature in the baffle compartment are the main driving parameters explaining the trend in spectral performance deviations in the time and the space (across-track) domains, respectively. The results presented in this paper show that the system in its current setup needs further improvements to reach a stable performance. Findings provided useful guidelines for the instrument revision currently under way. The main aim of the revision is the stabilization of the instrument for a range of temperature and pressure conditions to be encountered during operation.

© 2010 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: February 22, 2010
Revised Manuscript: April 23, 2010
Manuscript Accepted: April 23, 2010
Published: May 26, 2010

Citation
Petra D’Odorico, Edoardo Alberti, and Michael E. Schaepman, "In-flight spectral performance monitoring of the Airborne Prism Experiment," Appl. Opt. 49, 3082-3091 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-16-3082


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. E. Schaepman, S. L. Ustin, A. J. Plaza, T. H. Painter, J. Verrelst, and S. Liang, “Earth system science related imaging spectroscopy-an assessment,” Remote Sens. Environ. 113, S123–S137 (2009). [CrossRef]
  2. J. Nieke, D. Schlaepfer, F. Dell’Endice, J. Brazile, and K. I. Itten, “Uniformity of imaging spectrometry data products,” IEEE Trans. Geosci. Remote Sens. 46, 3326–3336(2008). [CrossRef]
  3. D. Schlaepfer, J. Nieke, and K. I. Itten, “Spatial PSF nonuniformity effects in airborne pushbroom imaging spectrometry data,” IEEE Trans. Geosci. Remote Sens. 45, 458–468 (2007). [CrossRef]
  4. F. Dell’Endice, J. Nieke, D. Schlaepfer, and K. I. Itten, “Scene-based method for spatial misregistration detection in hyperspectral imagery,” Appl. Opt. 46, 2803–2816 (2007). [CrossRef] [PubMed]
  5. G. Vane, A. F. H. Goetz, and J. B. Wellman, “Airborne imaging spectrometer: a new tool for remote sensing,” IEEE Trans. Geosci. Remote Sens. GE-22, 546–549 (1983).
  6. M. E. Schaepman and S. Dangel, “Solid laboratory calibration of a nonimaging spectroradiometer,” Appl. Opt. 39, 3754–3764 (2000). [CrossRef]
  7. N. Fox, J. Aiken, J. J. Barnett, X. Briottet, R. Carvell, C. Frohlich, S. B. Groom, O. Hagolle, J. D. Haigh, H. H. Kieffer, J. Lean, D. B. Pollock, T. Quinn, M. C. W. Sandford, M. Schaepman, K. P. Shine, W. K. Schmutz, P. M. Teillet, K. J. Thome, M. M. Verstraete, and E. Zalewski, “Traceable radiometry underpinning terrestrial- and helio-studies (TRUTHS),” Adv. Space Res. 32, 2253–2261 (2003). [CrossRef]
  8. P. N. Slater, S. F. Biggar, J. M. Palmer, and K. J. Thome, “Unified approach to absolute radiometric calibration in the solar-reflective range,” Remote Sens. Environ. 77, 293–303 (2001). [CrossRef]
  9. P. Gege, J. Fries, P. Haschberger, P. Schötz, H. Schwarzer, P. Strobl, B. Suhr, G. Ulbrich, and W. J. Vreeling, “Calibration facility for airborne imaging spectrometers,” ISPRS J. Photogramm. Remote Sens. 64, 387–397 (2009). [CrossRef]
  10. R. Green, “Spectral calibration requirements for Earth-looking imaging spectrometers in the solar-reflected spectrum,” Appl. Opt. 37, 683–690 (1998). [CrossRef]
  11. P. Mouroulis, R. Green, and T. Chrien, “Design of pushbroom imaging spectrometer for optimum recovery of spectroscopic and spatial information,” Appl. Opt. 39, 2210–2220 (2000). [CrossRef]
  12. D. Schläpfer, J. Nieke, and K. I. Itten, “Spatial PSF nonuniformity effects in airborne pushbroom imaging spectrometry data,” IEEE Trans. Geosci. Remote Sens. 45, 458–468(2007). [CrossRef]
  13. L. Guanter, K. Segl, B. Sang, L. Alonso, H. Kaufmann, and J. Moreno, “Scene-based spectral calibration assessment of high spectral resolution imaging spectrometers,” Opt. Express 17, 11594–11606 (2009). [CrossRef] [PubMed]
  14. L. Guanter, V. Estellès, and J. Moreno, “Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data,” Remote Sens. Environ. 109, 54–65 (2007). [CrossRef]
  15. H. Montgomery, N. Che, K. Parker, and J. Bowser, “The algorithm for MODIS wavelength on-orbit calibration using the SRCA,” IEEE Trans. Geosci. Remote Sens. 38, 877–884(2000). [CrossRef]
  16. S. Delwart, R. Preusker, L. Bourg, R. Santer, D. Ramon, and J. Fischer, “MERIS in-flight spectral calibration,” Int. J. Remote Sens. 28, 479–496 (2007). [CrossRef]
  17. P. S. Barry, J. Shepanski, and C. Segal, “Hyperion on-orbit validation of spectral calibration using atmospheric lines and an on-board system,” Proc. SPIE 4480, 231–235 (2002). [CrossRef]
  18. R. Green and B. Pavri, “AVIRIS inflight calibration experiment measurements, analysis and results in 2000,” in Proceedings of the Tenth JPL Airborne Earth Science Workshop (Jet Propulsion Laboratory, 2001), pp. 205–219.
  19. L. Guanter, R. Richter, and J. Moreno, “Spectral calibration of hyperspectral imagery using atmospheric absorption features,” Appl. Opt. 45, 2360–2370 (2006). [CrossRef] [PubMed]
  20. R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998). [CrossRef]
  21. T. Chrien, M. Eastwood, R. Green, C. Sarture, H. Johnson, C. Chovit, and P. Hajek, “airborne visible/infrared imaging spectrometer (AVIRIS) onboard calibration system,” in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop (Jet Propulsion Laboratory, 1995), pp. 31–32.
  22. P. S. S. Thiemann, P. Gege, N. Stahl, W. Mooshuber, and H. van der Piepen, “Das abbildende spektrometer ROSIS,” in Publikationen der Deutschen Gesellschaft für Photogrammetrie und Fernerkundung, E.Seyfert, ed. (DLR, 2001), pp. 147–153.
  23. K. Itten, F. Dell Endice, A. Hueni, M. Kneubuehler, D. Schlaepfer, D. Odermatt, F. Seidel, S. Huber, J. Schopfer, T. Kellenberger, Y. Buehler, P. D’Odorico, J. Nieke, E. Alberti, and K. Meuleman, “APEX—the hyperspectral ESA airborne prism experiment,” Sensors 8, 6235–6259 (2008). [CrossRef]
  24. K. I. Itten, M. Schaepman, L. De Vos, L. Hermans, H. Schlaepfer, and F. Droz, “APEX—airborne PRISM experiment: a new concept for an airborne imaging spectrometer,” in Proceedings of the Third International Airborne Remote Sensing Conference and Exhibition (Environmental Research Institute of Michigan, 1997), pp. 181–188.
  25. D. Schläpfer and M. Schaepman, “Modelling the noise equivalent radiance requirements of imaging spectrometers based on scientific applications,” Appl. Opt. 41, 5691–5701 (2002). [CrossRef] [PubMed]
  26. P. Chorier and P. Tribolet, “High performance HgCdTe SWIR detectors for hyperspectral instruments,” Proc. SPIE 4540, 328–341 (2001). [CrossRef]
  27. P. D’Odorico, E. Alberti, F. Dell’Endice, A. Hüni, and K. Itten, “An algorithm for tracking APEX spectral stability by means of the in-flight characterizarion facility (IFC),” in Proceedings of the 6th EARSeL Workshop on Imaging Spectroscopy(EARSeL, 2009), p. 5.
  28. P. D’Odorico, E. Alberti, F. Dell’Endice, A. Hüni, and M. Schaepman, “Spectral stability monitoring of an imaging spectrometer by means of onboard sources.,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2009), I-72–I-75. [CrossRef]
  29. C. Zhu and L. M. Hanssen, “Comparison and development of absorption peak determination algorithms for wavelength standards,” Proc. SPIE 4103, 62–68 (2000). [CrossRef]
  30. C. Zhu and L. M. Hanssen, “Absorption-line evaluation methods for wavelength standards,” Proc. SPIE 3425, 111–118(1998). [CrossRef]
  31. B. C. Gao, M. Montes, and C. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004). [CrossRef]
  32. R. A. Neville, L. Sun, and K. Staenz, “Spectral calibration of imaging spectrometers by atmospheric absorption feature matching,” Can. J. Remote Sens. Suppl. 1 34, S29–S42 (2008). [CrossRef]
  33. R. A. Neville, L. Sun, and K. Staenz, “Detection of spectral line curvature in imaging spectrometer data,” Proc. SPIE 5093, 144–154. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited