OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 16 — Jun. 1, 2010
  • pp: 3102–3110

Long-wave infrared surface plasmon grating coupler

Justin W. Cleary, Gautam Medhi, Robert E. Peale, and Walter R. Buchwald  »View Author Affiliations


Applied Optics, Vol. 49, Issue 16, pp. 3102-3110 (2010)
http://dx.doi.org/10.1364/AO.49.003102


View Full Text Article

Enhanced HTML    Acrobat PDF (750 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simplified analytic formula that may be used to design gratings intended to couple long-wave infrared radiation to surface plasmons. It is based on the theory of Hessel and Oliner (1965). The recipe is semiempirical, in that it requires knowledge of a surface-impedance modulation amplitude, which is found here as a function of the grating groove depth and the wavelength for silver lamellar gratings at CO 2 laser wavelengths. The optimum groove depth for photon-to-surface-plasmon energy conversion was found by experiment and calculation to be 10 % 15 % of the wavelength. This value is about twice what has been reported previously in the visible spectral range for sinusoidal grating profiles.

© 2010 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(260.3060) Physical optics : Infrared
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 1, 2010
Revised Manuscript: April 29, 2010
Manuscript Accepted: May 4, 2010
Published: May 28, 2010

Citation
Justin W. Cleary, Gautam Medhi, Robert E. Peale, and Walter R. Buchwald, "Long-wave infrared surface plasmon grating coupler," Appl. Opt. 49, 3102-3110 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-16-3102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44–50 (2008). [CrossRef]
  2. J. W. Cleary, R. E. Peale, D. Shelton, G. Boreman, and W. R. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. Mater. Res. Soc. 1133, 1133-AA10-03 (2008). [CrossRef]
  3. R. Soref, R. E. Peale, and W. R. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008). [CrossRef]
  4. D. Heitmann, “Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces,” J. Phys. C: Solid State Phys. 10, 397–405 (1977). [CrossRef]
  5. I. Pockrand, “Resonance anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D: Appl. Phys. 9, 2423–2432 (1976). [CrossRef]
  6. M. C. Hutley and V. M. Bird, “A detailed experimental study of the anomalies of a sinusoidal diffraction grating,” J. Mod. Opt. 20, 771–782 (1973). [CrossRef]
  7. R. W. Day, S. S. Wang, and R. Magnusson, “Filter-response line shapes of resonant waveguide gratings,” J. Lightwave Technol. 14, 1815–1824 (1996). [CrossRef]
  8. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B. 66, 155412 (2002). [CrossRef]
  9. A. V. Kats and A. Y. Nikitan, “Nonzeroth-order anomalous optical transparency in modulated metal films owing to excitation of surface plasmon polaritons: an analytic approach,” JETP Lett. 79, 625–631 (2004). [CrossRef]
  10. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997). [CrossRef]
  11. D. Shin, Z. S. Liu, and R. Magnusson, “Resonant Brewster filters with absentee layers,” Opt. Lett. 27, 1288–1290 (2002). [CrossRef]
  12. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  13. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–436 (1976). [CrossRef]
  14. R. C. McPhedran and D. Maystre, “Detailed theoretical study of the anomalies of a sinusoidal diffraction grating,” J. Mod. Opt. 21, 413–421 (1974). [CrossRef]
  15. D. Maystre and M. Neviere, “Quantitative theoretical study on the plasmon anomalies of diffraction gratings,” J. Opt. 8, 165–174 (1977). [CrossRef]
  16. D. Maystre, “General study of grating anomalies from electromagnetic surface modes,” in Electromagnetic Surface Modes, A.D.Boardman, ed. (Wiley, 1982), Chap. 17.
  17. J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010). [CrossRef]
  18. Lord Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London Ser. A 79, 399–416 (1907).
  19. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902). [CrossRef]
  20. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1986).
  21. S. Yang, “Effect of surface texture and geometry on spoof surface plasmon dispersion,” Opt. Eng. 47, 029001 (2008). [CrossRef]
  22. M. Neviere, P. Vincent, and R. Petit, “Some studies on behavior of surface impedance in vicinity of gratings,” Opt. Commun. 21, 369–373 (1977). [CrossRef]
  23. A. Wirgin and A. A. Maradudin, “Resonant response of a bare metallic grating to S-polarized light,” Prog. Surf. Sci. 22, 1–99(1986). [CrossRef]
  24. R. A. Depine and V. L. Brudny, “A simple-model for a microrough diffraction grating that predicts diffuse light bands,” J. Mod. Opt. 36, 1257–1271 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited