OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 16 — Jun. 1, 2010
  • pp: 3150–3162

Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment

Karen Friedrich, Steffen Wilbrandt, Olaf Stenzel, Norbert Kaiser, and Karl Heinz Hoffmann  »View Author Affiliations


Applied Optics, Vol. 49, Issue 16, pp. 3150-3162 (2010)
http://dx.doi.org/10.1364/AO.49.003150


View Full Text Article

Enhanced HTML    Acrobat PDF (1169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Virtual deposition runs have been performed to estimate the production yield of selected oxide optical interference coatings when plasma ion-assisted deposition with an advanced plasma source is applied. Thereby, deposition of each layer can be terminated either by broadband optical monitoring or quartz crystal monitoring. Numerous deposition runs of single-layer coatings have been performed to investigate the reproducibility of coating properties and to quantify deposition errors for the simulation. Variations of the following parameters are considered in the simulation: refractive index, extinction coefficient, and film thickness. The refractive index and the extinction coefficient are simulated in terms of the oscillator model. The parameters are varied using an apodized normal distribution with known mean value and standard deviation. Simulation of variations in the film thickness is performed specific to the selected monitoring strategy. Several deposition runs of the selected oxide interference coatings have been performed to verify the simulation results by experimental data.

© 2010 Optical Society of America

OCIS Codes
(310.1620) Thin films : Interference coatings
(310.1860) Thin films : Deposition and fabrication
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

History
Original Manuscript: March 29, 2010
Revised Manuscript: May 10, 2010
Manuscript Accepted: May 11, 2010
Published: May 31, 2010

Citation
Karen Friedrich, Steffen Wilbrandt, Olaf Stenzel, Norbert Kaiser, and Karl Heinz Hoffmann, "Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment," Appl. Opt. 49, 3150-3162 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-16-3150


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Willey, Practical Design and Production of Optical Thin Films (Marcel Dekker, 2002).
  2. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992). [CrossRef]
  3. C. Holm, “Optical thin film production with continuous reoptimization of layer thicknesses,” Appl. Opt. 18, 1978–1982(1979). [CrossRef]
  4. L. Li and Y. Yen, “Wideband monitoring and measuring system for optical coatings,” Appl. Opt. 28, 2889–2894 (1989). [CrossRef]
  5. J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34, 313–321 (1976). [CrossRef]
  6. A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005). [CrossRef]
  7. A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, T. V. Amotchkina, A. Duparré, E. Quesnel, D. Ristau, and S. Günster, “Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films,” Appl. Opt. 41, 2555–2560 (2002). [CrossRef]
  8. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring,” Appl. Opt. 45, 7026–7034 (2006). [CrossRef]
  9. E.-S. S. Aziz and C. Chassapis, “A decision-making framework model for design and manufacturing of mechanical transmission system development,” Eng. Comput. 21, 164–176 (2005). [CrossRef]
  10. N. A. Langrana, D. Qiu, E. Bossett, S. C. Danforth, M. Jafari, and A. Safari, “Virtual simulation and video microscopy for fused deposition methods,” Mater. Des. 21, 75–82 (2000). [CrossRef]
  11. S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008). [CrossRef]
  12. http://www.optilayer.com.
  13. J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, and P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981). [CrossRef]
  14. W. P. Theoni, “Deposition of optical coatings: process control and automation,” Thin Solid Films 88, 385–397 (1982). [CrossRef]
  15. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46, 4294–4303 (2007). [CrossRef]
  16. A. V. Tikhonravov and M. K. Trubetskov, “OptiMon.dll,” for details contact steffen.wilbrandt@iof.fraunhofer.de.
  17. H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981). [CrossRef]
  18. O. Stenzel, The Physics of Thin Film Optical Spectra, Vol. 44 of Springer Series in Surface Sciences (Springer2005).
  19. http://www.sci-soft.com/Film%20Wizard.htm.
  20. http://www.wtheiss.com/?c=2&content=applications_scout.
  21. http://www.ftgsoftware.com/.
  22. http://www.jawoollam.com/software.html.
  23. http://www.thinfilmcenter.com.
  24. J. H. Dobrowolski, F. C. Ho, and A. Waldorf, “Determination of optical constants of thin film coating materials based on inverse synthesis,” Appl. Opt. 22, 3191–3200 (1983). [CrossRef]
  25. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008). [CrossRef]
  26. O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “ Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21, 15 (2009). [CrossRef]
  27. O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A Pure Appl. Opt. 10, 085305 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited