OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 16 — Jun. 1, 2010
  • pp: D6–D11

Motion-free hybrid design laser beam propagation analyzer using a digital micromirror device and a variable focus liquid lens

Mumtaz Sheikh and Nabeel A. Riza  »View Author Affiliations

Applied Optics, Vol. 49, Issue 16, pp. D6-D11 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (562 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To the best of our knowledge, we propose the first motion-free laser beam propagation analyzer with a hybrid design using a digital micromirror device (DMD) and a liquid electronically controlled variable focus lens (ECVFL). Unlike prior analyzers that require profiling the beam at multiple locations along the light propagation axis, the proposed analyzer profiles the beam at the same plane for multiple values of the ECVFL focal length, thus eliminating beam profiler assembly motion. In addition to measuring standard Gaussian beam parameters, the analyzer can also be used to measure the M 2 beam propagation parameter of a multimode beam. Proof-of-concept beam parameter measurements with the proposed analyzer are successfully conducted for a 633 nm laser beam. Given the all-digital nature of the DMD-based profiling and all-analog motion-free nature of the ECVFL beam focus control, the proposed analyzer versus prior art promises better repeatability, speed, and reliability.

© 2010 Optical Society of America

OCIS Codes
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(350.5500) Other areas of optics : Propagation
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
General Optical Instrumentation

Original Manuscript: August 25, 2009
Manuscript Accepted: October 3, 2009
Published: January 7, 2010

Mumtaz Sheikh and Nabeel A. Riza, "Motion-free hybrid design laser beam propagation analyzer using a digital micromirror device and a variable focus liquid lens," Appl. Opt. 49, D6-D11 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550-1567 (1966). [CrossRef] [PubMed]
  2. J. E. Sollid, C. R. Phipps, Jr., S. J. Thomas, and E. J. McLellan, “Lensless method of measuring Gaussian laser beam divergence,” Appl. Opt. 17, 3527-3529 (1978). [CrossRef] [PubMed]
  3. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Claviére, E. A. Franke, and J. M. Franke, “Technique for fast measurement of Gaussian laser beam parameters,” Appl. Opt. 10, 2775-2776 (1971). [PubMed]
  4. Y. Suzaki and A. Tachibana, “Measurement of the Gaussian laser beam divergence,” Appl. Opt. 16, 1481-1482 (1977). [CrossRef] [PubMed]
  5. J. Falk, “Measurement of laser beam divergence,” Appl. Opt. 22, 1131-1132 (1983). [CrossRef] [PubMed]
  6. R. M. Herman, J. Pardo, and T. A. Wiggins, “Diffraction and focusing of Gaussian beams,” Appl. Opt. 24, 1346-1354 (1985). [CrossRef] [PubMed]
  7. S. Nemoto, “Determination of waist parameters of a Gaussian beam,” Appl. Opt. 25, 3859-3863 (1986). [CrossRef] [PubMed]
  8. T. F. Johnston, Jr., “Beam propagation (M2) measurement made as easy as it gets: the four-cuts method,” Appl. Opt. 37, 4840-4850 (1998). [CrossRef]
  9. W. Plass, R. Maestle, K. Wittig, A. Voss, and A. Giesen, “High-resolution knife-edge laser beam profiling,” Opt. Commun. 134, 21-24 (1997). [CrossRef]
  10. D. R. Skinner and R. E. Whitcher, “Measurement of the radius of a high-power laser beam near the focus of a lens,” J. Phys. E 5, 237-238 (1972). [CrossRef]
  11. P. J. Brannon, J. P. Anthes, G. L. Cano, and J. E. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576-3579(1975). [CrossRef]
  12. P. J. Shayler, “Laser beam distribution in the focal region,” Appl. Opt. 17, 2673-2674 (1978). [CrossRef] [PubMed]
  13. C. P. Wang, “Measuring 2-D laser-beam phase and intensity profiles: a new technique,” Appl. Opt. 23, 1399-1402(1984). [CrossRef] [PubMed]
  14. H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Surface plasmon polariton-based optical beam profiler,” Opt. Lett. 29, 1408-1410 (2004). [CrossRef] [PubMed]
  15. M. K. Giles and E. M. Kim, “Linear systems approach to fiber characterization using beam profile measurements,” Proc. SPIE 500, 67-70 (1984).
  16. S. Sumriddetchkajorn and N. A. Riza, “Micro-electromechanical system-based digitally controlled optical beam profiler,” Appl. Opt. 41, 3506-3510 (2002). [CrossRef] [PubMed]
  17. N. A. Riza, “Digital optical beam profiler,” U.S. patent 6,922,233 (26 July 2005).
  18. N. A. Riza and M. J. Mughal, “Optical power independent optical beam profiler,” Opt. Eng. 43, 793-797 (2004). [CrossRef]
  19. N. A. Riza and F. N. Ghauri, “Super resolution hybrid analog-digital optical beam profiler using digital micro-mirror device,” IEEE Photon. Technol. Lett. 17, 1492-1494(2005). [CrossRef]
  20. M. Sheikh and N. A. Riza, “Demonstration of pinhole laser beam profiling using a digital micro-mirror device,” IEEE Photon. Technol. Lett. 21, 666-668 (2009). [CrossRef]
  21. M. Gentili and N. A. Riza, “Wide-aperture no-moving-parts optical beam profiler using liquid-crystal displays,” Appl. Opt. 46, 506-512 (2007). [CrossRef] [PubMed]
  22. M. W. Sasnett, “Propagation of multimode laser beams--the M2 factor,” in Physics and Technology of Laser Resonators, D. R. Hall and P. E. Jackson, eds. (Hilger, 1989), Chap. 9, pp. 132-142.
  23. A. E. Siegman, “How to (maybe) measure laser beam quality,” in Vol. 17 of OSA Trends in Optics and Photonics, pp. 184-199 (Optical Society of America, 1998).
  24. Model Arctic 320 Liquid Lens Technical Data Sheet: Optical and Opto-Mechanical Data (Varioptic, SA., Lyon, France, 2006), p. 1.
  25. P. Ruffin, “Autofocus liquid lenses target new applications,” Opt. Laser Europe Mag. , pp. 17-20 (October 2007).
  26. K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math. 2, 164-168(1944).
  27. “Test methods for laser beam parameters: beam widths, divergence angle, and beam propagation factor,” ISO/TC 172/SC9/WG1, ISO/DIS 11146, available from Deutsches Institut für Normung, Pforzheim, Germany.
  28. M. W. Sasnett and T. F. Johnston, Jr., “Apparatus for measuring the mode quality of a laser beam,” U.S. patent 5,214,485 (25 May 1993).
  29. A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212-1217 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited