OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 17 — Jun. 10, 2010
  • pp: 3274–3281

Stabilized master laser system for differential absorption lidar

Alex Dinovitser, Murray W. Hamilton, and Robert A. Vincent  »View Author Affiliations

Applied Optics, Vol. 49, Issue 17, pp. 3274-3281 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (597 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wavelength accuracy and stability are key requirements for differential absorption lidar (DIAL). We present a control and timing design for the dual-stabilized cw master lasers in a pulsed master-oscillator power-amplifier configuration, which forms a robust low-cost water-vapor DIAL transmitter system. This design operates at 823 nm for water-vapor spectroscopy using Fabry–Perot-type laser diodes. However, the techniques described could be applied to other laser technologies at other wavelengths. The system can be extended with additional off-line or side-line wavelengths. The on-line master laser is locked to the center of a water absorption line, while the beat frequency between the on-line and the off-line is locked to 16 GHz using only a bandpass microwave filter and low-frequency electronics. Optical frequency stabilities of the order of 1 MHz are achieved.

© 2010 Optical Society of America

OCIS Codes
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 2, 2010
Revised Manuscript: May 11, 2010
Manuscript Accepted: May 14, 2010
Published: June 3, 2010

Alex Dinovitser, Murray W. Hamilton, and Robert A. Vincent, "Stabilized master laser system for differential absorption lidar," Appl. Opt. 49, 3274-3281 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Minschwaner and A. E. Dessler, “Water vapor feedback in the tropical upper troposphere: model results and observations,” J. Climate 17, 1272–1282 (2004). [CrossRef]
  2. W. Ingram, “On the robustness of the water vapor feedback: GCM vertical resolution and formulation,” J. Climate 15, 917–921 (2002). [CrossRef]
  3. S. Pal, A. Behrendt, H. Bauer, M. Radlach, A. Riede, M. Schiller, G. Wagner, and V. Wulfmeyer, “3-dimensional observations of atmospheric variables during the field campaign COPS,” IOP Conf. Ser.: Earth Environ. Sci. 1, 012031 (2008). [CrossRef]
  4. V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapor remote sensing from space: an analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005). [CrossRef]
  5. S. Heise, J. Wickert, G. Beyerle, T. Schmidt, and Ch. Reigber, “Global monitoring of tropospheric water vapor with GPS radio occultation aboard CHAMP,” Adv. Space Res. 37, 2222–2227 (2006). [CrossRef]
  6. A. Ansmann and J. Bosenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987). [CrossRef] [PubMed]
  7. V. Wulfmeyer and J. Bosenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998). [CrossRef]
  8. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002). [CrossRef]
  9. D. Bruneau, P. Quaglia, C. Flamant, M. Meissonnier, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40, 3450–3461 (2001). [CrossRef]
  10. A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009). [CrossRef]
  11. J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110–3121 (2004). [CrossRef] [PubMed]
  12. H. Schwarzer, A. Börner, A. Fix, B. Günther, H-W. H., M. Raugust, F. Schrandt, and M. Wirth, “Development of a wavelength stabilized seed laser system for an airborne water vapour lidar experiment,” Proc. SPIE 6681, 66810H (2007). [CrossRef]
  13. E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998). [CrossRef]
  14. M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96, 201–213 (2009). [CrossRef]
  15. G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47, 944–956(2008). [CrossRef] [PubMed]
  16. K. Ertel, H. Linné, and J. Bösenberg, “Injection seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation,” Appl. Opt. 44, 5120–5126(2005). [CrossRef] [PubMed]
  17. H. R. Khalesifard, A. Fix, G. Ehret, M. Schiller, and V. Wulfmeyer, “Fast-switching system for injection seeding of a high-power Ti:sapphire laser,” Rev. Sci. Instrum. 80, 073110(2009). [CrossRef] [PubMed]
  18. S. Schilt, R. Matthey, D. Kauffmann-Werner, C. Affolderbach, G. Mileti, and L. Thévenaz, “Laser offset-frequency locking up to 20GHz using a low-frequency electrical filter technique,” Appl. Opt. 47, 4336–4344 (2008). [CrossRef] [PubMed]
  19. L. Hollberg, S. Diddams, A. Bartels, T. Fortier, and K. Kim, “The measurement of optical frequencies,” Metrologia 42, S105–S124 (2005). [CrossRef]
  20. J. Appel, A. MacRae, and A. I. Lvovsky, “A versatile digital GHz phase lock for external cavity diode lasers,” Meas. Sci. Technol. 20, 055302 (2009). [CrossRef]
  21. U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243(1999). [CrossRef]
  22. V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321–5336 (2001). [CrossRef]
  23. World Meteorological Organization, “Measurement of humidity,” in Guide to Meteorological Instruments and Methods of Observation (World Meteorological Organization, 2008), pp. 1.4–25.
  24. A. Apelblat, “The vapour pressures of water over saturated aqueous solutions of barium chloride, magnesium nitrate, calcium nitrate, potassium carbonate, and zinc sulfate, at temperatures from 283K to 313K,” J. Chem. Thermodyn. 24, 619–626 (1992). [CrossRef]
  25. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Danaj, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldmanm, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572(2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited