OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 17 — Jun. 10, 2010
  • pp: 3291–3296

Nondirectional edge enhancement by contrast- reverted low-pass Fourier filtering

José A. Ferrari and Jorge L. Flores  »View Author Affiliations

Applied Optics, Vol. 49, Issue 17, pp. 3291-3296 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (477 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an image processing method for nondirectional edge extraction/enhancement. The method is based on the capability of twisted-nematic liquid-crystal displays (LCDs) to traduce the image information in changes of the state of polarization of the light, which allows us to generate simultaneously a “positive” and a “negative” (i.e., contrast-reversed) replica of the digital image displayed on the LCD. The negative image is low-pass filtered in a novel polarization-selective 4 f optical processor. When the smoothed negative image is imagined together with the original image, an image with nondirectional edge enhancement is obtained. Unlike other Fourier methods presented in the literature, the proposed technique provides a simple way to control the relative amount of high frequencies present in the final image. The proposed method does not involve numerical processing, and, thus, it could be a useful tool for edge extraction/enhancement in large images in real-time applications. Validation experiments are presented.

© 2010 Optical Society of America

OCIS Codes
(100.1160) Image processing : Analog optical image processing
(100.2980) Image processing : Image enhancement

ToC Category:
Image Processing

Original Manuscript: April 13, 2010
Revised Manuscript: May 11, 2010
Manuscript Accepted: May 18, 2010
Published: June 3, 2010

José A. Ferrari and Jorge L. Flores, "Nondirectional edge enhancement by contrast-reverted low-pass Fourier filtering," Appl. Opt. 49, 3291-3296 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Marr and E. Hildreth, “Theory of edge detection,” Proc. Roy. Soc. London B 207, 187–217 (1980).
  2. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986). [CrossRef]
  3. L. Ding and A. Goshtasby, “On the Canny edge detector,” Patt. Recog. 34, 721–725 (2001). [CrossRef]
  4. Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshn, “GpuCV: A GPU-accelerated framework for image processing and computer vision,” in Advances in Visual Computing: 4th International Symposium, ISVC, Part II, G.Bebis, R.Boyle, B.Parvin, D.Koracin, P.Remagnino, F.Porikli, J.Peters, J.Koslowski, L.Arns, Y.K.Chun, T.-M.Rhyne, and L.Monroe, eds. (Springer-Verlag, 2008), pp. 430–439.
  5. T. Luft, C. Colditz, and O. Deussen, “Image enhancement by unsharp masking the depth buffer,” ACM Trans. Graph. 25, 1206–1213 (2006). [CrossRef]
  6. C. S. Yelleswarapu, S. R. Kothapalli, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876–1888(2008). [CrossRef] [PubMed]
  7. J. P. Huignard and J. P. Herriau, “Real-time coherent object edge reconstruction with Bi12SiO20 crystals,” Appl. Opt. 17, 2671–2672 (1978). [CrossRef] [PubMed]
  8. T. Y. Chang, J. H. Hong, and Pochi Yeh, “Spatial amplification: an image-processing technique using the selective amplification of spatial frequencies,” Opt. Lett. 15, 743–745 (1990). [CrossRef] [PubMed]
  9. R. Thoma, N. Hampp, and C. Brauchle, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651–653 (1991). [CrossRef] [PubMed]
  10. M. Storrs, D. J. Mehrl, and J. F. Walkup, “Programmable spatial filtering with bacteriorhodopsin,” Appl. Opt. 35, 4632–4636 (1996). [CrossRef] [PubMed]
  11. S. R. Kothapalli, P. Wu, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Nonlinear optical Fourier filtering technique for medical image processing,” J. Biomed. Opt. 10, 044028 (2005). [CrossRef]
  12. Casasent and J. Chen, “Nonlinear local image preprocessing using coherent optical techniques,” Appl. Opt. 22, 808–814(1983). [CrossRef] [PubMed]
  13. J. Mazzaferri and S. Ledesma, “Rotation invariant real-time optical edge detector,” Opt. Commun. 272, 367–376 (2007). [CrossRef]
  14. A. Hermerschmidt, “OptiXplorer—optics experiments with an addressable spatial light modulator,” http://www.holoeye.com/download_daten/OptiXplorer_presentation.pdf.
  15. J. L. Flores and J. A. Ferrari, “Orientation-selective edge detection/enhancement using the irradiance transport equation,” Appl. Opt. 49, 619–624 (2010). [CrossRef] [PubMed]
  16. J. A. Ferrari, J. L. Flores, and G. Garcia-Torales, “Directional edge enhancement using a liquid-crystal display,” Opt. Commun. 283, 2803–2806 (2010). [CrossRef]
  17. J. A. Ferrari, J. L. Flores, C. D. Perciante, and E. Frins, “Edge enhancement and image equalization by unsharp masking using self-adaptive photochromic filters,” Appl. Opt. 48, 3570–3579 (2009). [CrossRef] [PubMed]
  18. T. E. Gureyev, A. W. Stevenson, Ya. I. Nesterets, and S. W. Wilkins, “Image deblurring by means of defocus,” Opt. Commun. 240, 81–88 (2004). [CrossRef]
  19. T. E. Gureyev, Ya. I. Nesterets, A. W. Stevenson, and S. W. Wilkins, “A method for local deconvolution,” Appl. Opt. 42, 6488–6494 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited