OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 17 — Jun. 10, 2010
  • pp: 3380–3393

Practical analytical backscatter error bars for elastic one-component lidar inversion algorithm

Francesc Rocadenbosch, M. Nadzri Md. Reba, Michaël Sicard, and Adolfo Comerón  »View Author Affiliations


Applied Optics, Vol. 49, Issue 17, pp. 3380-3393 (2010)
http://dx.doi.org/10.1364/AO.49.003380


View Full Text Article

Enhanced HTML    Acrobat PDF (1163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an analytical formulation to compute the total-backscatter range-dependent error bars from the well-known Klett’s elastic-lidar inversion algorithm. A combined error-propagation and statistical formulation approach is used to assess inversion errors in response to the following error sources: observation noise (i.e., signal-to-noise ratio) in the reception channel, the user’s uncertainty in the backscatter calibration, and in the (range-dependent) total extinction-to-backscatter ratio provided. The method is validated using a Monte Carlo procedure, where the error bars are computed by inversion of a large population of noisy generated lidar signals, for total optical depths τ 5 and typical user uncertainties, all of which yield a practical tool to compute the sought-after error bars.

© 2010 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.3640) Atmospheric and oceanic optics : Lidar

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 28, 2010
Revised Manuscript: April 26, 2010
Manuscript Accepted: April 27, 2010
Published: June 8, 2010

Citation
Francesc Rocadenbosch, M. Nadzri Md. Reba, Michaël Sicard, and Adolfo Comerón, "Practical analytical backscatter error bars for elastic one-component lidar inversion algorithm," Appl. Opt. 49, 3380-3393 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-17-3380


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Reagan, X. Wang, and M. T. Osborn, “Spaceborne lidar calibration from cirrus and molecular backscatter returns,” IEEE Trans. Geosci. Remote Sensing 40, 2285–2290 (2002). [CrossRef]
  2. D. Winker, J. Pelon, and M. McCormick, “Initial results from CALIPSO,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C.Nagasawa and N.Sugimoto, eds. (IOP, 2006), pp. 991–994.
  3. H. Nett and M. Endemann, “Atmospheric Dynamics Mission: AEOLUS,” Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), Vol. 2, pp. 1190–1195. [CrossRef]
  4. European Space Agency’s Wind Mission ADM-AEOLUS, Tech. Rep. BR-236 (European Space Research and Technology Centre, 2005).
  5. C. Böckmann, D. Müller, L. Osterloh, P. Pornsawad, and A. Papayannis, “From EARLINET-ASOS Raman-Lidar signals to microphysical aerosol properties via advances regularizing software,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2008), pp. (II-422)–(II-425).
  6. W. Hitschfeld and J. Bordan, “Errors inherent in the radar measurement of rainfall at attenuating wavelengths,” J. Appl. Meteorol. 1158–67 (1954).
  7. E. W. Barrett and O. Ben-Dov, “Application of the lidar to air pollution measurements,” J. Appl. Meteorol. 6500–515 (1967). [CrossRef]
  8. W. Viezee, E. E. Uthe, and R. T. H. Collis, “Lidar observations of airfield approach conditions: an exploration study,” J. Appl. Meteorol. 8, 274–283 (1969). [CrossRef]
  9. P. A. Davis, “The analysis of lidar signatures of cirrus clouds,” Appl. Opt. 8, 2099–2102 (1969). [CrossRef] [PubMed]
  10. F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distribution by lidar,” J. Appl. Meteorol. 11482–489 (1972). [CrossRef]
  11. R. T. H. Collis and P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E.D.Hinkley, ed. (Springer-Verlag, 1976), pp. 71–102.
  12. R. H. Kohl, “Discussion of the interpretation problem encountered in single-wavelength lidar transmissometers,” J. Appl. Meteorol. 17, 1034–1038 (1978). [CrossRef]
  13. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef] [PubMed]
  14. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  15. Y. Sasano, E. V. Browell, and S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985). [CrossRef] [PubMed]
  16. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985). [CrossRef] [PubMed]
  17. World Meteorological Organization Global Atmosphere Watch, “Plan for the implementation of the GAW Aerosol Lidar Observation Network (GALION),” TD 1443 (World Meteorological Organization, 2007).
  18. J. D. Klett, “Lidar calibration and extinction coefficients,” Appl. Opt. 22, 514–515 (1983). [CrossRef] [PubMed]
  19. J. D. Klett, “Extinction boundary value algorithms for lidar inversion,” Appl. Opt. 25, 2462–2464 (1986). [CrossRef] [PubMed]
  20. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131(1992). [CrossRef] [PubMed]
  21. M. Sicard, P. Chazette, J. Pelon, J. Gwang-Won, and Soon-Chang Yoon, “Variational method for the retrieval of the optical thickness and the backscatter coefficient from multiangle lidar profiles,” Appl. Opt. 41, 493–502 (2002). [CrossRef] [PubMed]
  22. G. J. Kunz, “Transmission as an input boundary value for an analytical solution of a single-scatter lidar equation,” Appl. Opt. 35, 3255–3260 (1996). [CrossRef] [PubMed]
  23. V. A. Kovalev, “Lidar measurement of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios,” Appl. Opt. 32, 6053–6065 (1993). [CrossRef] [PubMed]
  24. V. A. Kovalev, “Stable near-end solution of the lidar equation for clear atmospheres,” Appl. Opt. 42, 585–591 (2003). [CrossRef] [PubMed]
  25. L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986). [CrossRef] [PubMed]
  26. F. Rocadenbosch and A. Comerón, “Error analysis for the lidar backward inversion algorithm,” Appl. Opt. 38, 4461–4474(1999). [CrossRef]
  27. J. Qiu, “Sensitivity of lidar equation solution to boundary values and determination of the values,” Adv. Atmos. Sci. 5, 229–241 (1988). [CrossRef]
  28. M. Matsumoto and N. Takeuchi, “Effects of misestimated far-end boundary values on two common lidar inversion solutions,” Appl. Opt. 33, 6451–6456 (1994). [CrossRef] [PubMed]
  29. F. Rocadenbosch, A. Comerón, and D. Pineda, “Assessment of lidar inversion errors for homogeneous atmospheres,” Appl. Opt. 37, 2199–2206 (1998). [CrossRef]
  30. A. Comerón, F. Rocadenbosch, M. A. López, A. Rodríguez, C. Muñoz, D. García-Vizcaíno, and M. Sicard, “Effects of noise on lidar data inversion with the backward algorithm,” Appl. Opt. 43, 2572–2577 (2004). [CrossRef] [PubMed]
  31. M. Sicard, A. Comerón, F. Rocadenbosch, A. Rodríguez, and C. Muñoz, “Quasi-analytical determination of noise-induced error limits in lidar retrieval of aerosol backscatter coefficient by the elastic, two-component algorithm,” Appl. Opt. 48, 176–182 (2009). [CrossRef] [PubMed]
  32. D. C. Knauss, “Significance of the boundary value term in the Klett lidar inversion formula,” Appl. Opt. 21, 4194–4194 (1982). [CrossRef] [PubMed]
  33. H. G. Hughes, J. A. Ferguson, and D. H. Stephans, “Sensitivity of a lidar inversion algorithm to parameters relating atmospheric backscatter and extinction,” Appl. Opt. 24, 1609–1613(1985). [CrossRef] [PubMed]
  34. M. Keastner, “Lidar inversion with variable backscatter/extinction: comment,” Appl. Opt. 25, 833–835 (1986). [CrossRef]
  35. Y. S. Balin, S. I. Kavkyanov, G. M. Krekov, and I. A. Razenkov, “Noise-proof inversion of lidar equation,” Opt. Lett. 12, 13–15(1987). [CrossRef] [PubMed]
  36. J. D. Spinhirne, J. A. Reagan, and B. M. Herman, “Vertical distribution of aerosol extinction cross section and interference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980). [CrossRef]
  37. R. J. Barlow, “Theoretical distributions,” in Statistics. A Guide to the Use of Statistical Methods in Physical Sciences (Wiley, 1999), pp. 28–33.
  38. M. N. Md. Reba, F. Rocadenbosch, and M. Sicard, “A straightforward signal-to-noise ratio estimator for elastic/Raman lidar signals,” Proc. SPIE 6362, 636223 (2006). [CrossRef]
  39. B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854–1861 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited