OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 18 — Jun. 20, 2010
  • pp: 3458–3464

Mueller matrix measurements on absorbing turbid medium

Mahesh Kumar Swami, Sandeep Manhas, Harishankar Patel, and Pradeep Kumar Gupta  »View Author Affiliations


Applied Optics, Vol. 49, Issue 18, pp. 3458-3464 (2010)
http://dx.doi.org/10.1364/AO.49.003458


View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization parameters of diffuse backscattered light from a turbid sample are sensitive to its structural properties and can, therefore, be used to probe morphological features of tissue and, thus, monitor changes that arise due to a disease. Extraction of morphological information from measured polarization param eters, however, requires a careful understanding of the dependence of these on factors such as size, size distribution, shape, and dielectric constant of the scatterers, which are often quite involved. In particular, the presence of absorption complicates the dependence of polarization parameters on tissue morphological features. We have found that, while for medium comprising small size scatterers (Rayleigh scatterers), the depolarization shows the expected decrease with an increase in the absorption of the scattering medium, a counterintuitive behavior was observed for larger size ( > λ ) scatterers. Further analysis of the results suggests that the observed behavior might arise due to the relative contribution of two depolarizing processes, one resulting from a series of out-of-plane scattering and the other due to the angular variation of the state of polarization in a single scattering event.

© 2010 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(170.7050) Medical optics and biotechnology : Turbid media
(260.5430) Physical optics : Polarization
(290.4210) Scattering : Multiple scattering

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 16, 2009
Revised Manuscript: April 26, 2010
Manuscript Accepted: May 21, 2010
Published: June 14, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Mahesh Kumar Swami, Sandeep Manhas, Harishankar Patel, and Pradeep Kumar Gupta, "Mueller matrix measurements on absorbing turbid medium," Appl. Opt. 49, 3458-3464 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-18-3458


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999). [CrossRef]
  2. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998). [CrossRef]
  3. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997). [CrossRef] [PubMed]
  4. D. J. Maitland and J. T. Walsh, Jr., “Quantitative measurement of linear birefringence during heating of native collagen,” Lasers Surg. Med. 20, 310–318 (1997). [CrossRef] [PubMed]
  5. D. A. Beach, C. Bustamante, K. Samwells, and K. M. Foucar, “Differential polarization imaging III. Theory confirmation. Patterns of polymerization of hemoglobin S in red blood sickle cells,” Biophys. J. 53, 449–456 (1988). [CrossRef] [PubMed]
  6. C. T. Gross, H. Salamon, A. J. Hunt, R. I. Macey, F. Orme, and A. T. Quintanilha, “Hemoglobin polymerization in sickle cells studied by circular polarized light scattering,” Biochim. Biophys. Acta 1079, 152–160 (1991). [CrossRef] [PubMed]
  7. I. A. Vitkin and E. Hoskinson, “Polarization studies in multiply scattering chiral media,” Opt. Eng. 39, 353–362(2000). [CrossRef]
  8. D. Cote and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004). [CrossRef] [PubMed]
  9. B. D. Cameron and G. L. Cote, “Noninvasive glucose sensing utilizing a digital closed loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44, 1221–227 (1997). [CrossRef] [PubMed]
  10. K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racimic and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002). [CrossRef] [PubMed]
  11. I. A. Vitkin, R. D. Laszlo, and C. L. Whyman, “Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light,” Opt. Express 10, 222–229 (2002). [PubMed]
  12. D. Cote and I. Vitkin, “Robust concentration determination of optically active molecule in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculation,” Opt. Express 13, 148–163 (2005). [CrossRef] [PubMed]
  13. S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, and P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton. 2, 581–587 (2009). [CrossRef]
  14. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and K. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14, 190–202(2006). [CrossRef] [PubMed]
  15. G. L. Liu, Y. Li, and B. D. Cameron, “Polarization based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208–220 (2002). [CrossRef]
  16. M. H. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001). [CrossRef]
  17. J. Chung, W. Jung, M. J. Hammer-Wilson, P. W. Smith, and Z. Chen, “Use of polar decomposition for the diagnosis of oral precancer,” Appl. Opt. 46, 3038–3045 (2007). [CrossRef] [PubMed]
  18. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994). [CrossRef]
  19. A. D. Kim and M. Moscoso, “Influence of the refractive index on the depolarization of multiply scattered waves,” Phys. Rev. E 64, 026612 (2001). [CrossRef]
  20. N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms—effect of collection geometry,” Opt. Commun. 222, 93–100 (2003). [CrossRef]
  21. N. Ghosh, H. S. Patel, and P. K. Gupta, “Depolarization of light in tissue phantoms—effect of a distribution in the size of scatterers,” Opt. Express 11, 2198–2205 (2003). [CrossRef] [PubMed]
  22. N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer,” Phys. Rev. E 70, 066607 (2004). [CrossRef]
  23. I. A. Vitkin and R. C. N. Studinski, “Polarization preservation in diffusive scattering from in-vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction,” Opt. Commun. 190, 37–43 (2001). [CrossRef]
  24. M. I. Mishchenko, L. Liu, and J. W. Hovenier, “Effects of absorption on multiple scattering by random particulate media: exact results,” Opt. Express 15, 13182–13187(2007). [CrossRef] [PubMed]
  25. D. A. Zimnyakov, Yu. P. Sinichkin, I. V. Kiseleva, and D. N. Agafonov, “Effect of absorption of multiply scattering media on the degree of residual polarization of backscattered light,” Opt. Spectrosc. 92, 765–771 (2002). [CrossRef]
  26. R. S. Verma, M. K. Swami, S. S. Manhas, and P. K. Gupta, “Mueller matrix-based optimization of reflective type twisted nematic liquid crystal SLM at oblique incidences,” Opt. Commun. 283, 2580–2587 (2010). [CrossRef]
  27. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996). [CrossRef]
  28. F. Le Roy-Brehonnet and B. Le Jeune, “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties,” Prog. Quantum Electron. 21, 109–151 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited