OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 18 — Jun. 20, 2010
  • pp: 3522–3537

Wavefront control of the Large Optics Test and Integration Site (LOTIS) 6.5 m Collimator

Steven C. West, Samuel H. Bailey, James H. Burge, Brian Cuerden, Jeff Hagen, Hubert M. Martin, and Michael T. Tuell  »View Author Affiliations


Applied Optics, Vol. 49, Issue 18, pp. 3522-3537 (2010)
http://dx.doi.org/10.1364/AO.49.003522


View Full Text Article

Enhanced HTML    Acrobat PDF (2017 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The LOTIS Collimator provides scene projection within a 6.5 m diameter collimated beam used for optical testing research in air and vacuum. Diffraction-limited performance (0.4 to 5 μm wavelength) requires active wavefront control of the alignment and primary mirror shape. A hexapod corrects secondary mirror alignment using measurements from collimated sources directed into the system with nine scanning pentaprisms. The primary mirror shape is controlled with 104 adjustable force actuators based on figure measurements from a center-of-curvature test. A variation of the Hartmann test measures slopes by monitoring the reflections from 36 small mirrors bonded to the optical surface of the primary mirror. The Hartmann source and detector are located at the f / 15 Cassegrain focus. Initial operation has demonstrated a closed-loop 110 nm rms wavefront error in ambient air over the 6.5 m collimated beam.

© 2010 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.6770) Imaging systems : Telescopes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.1680) Instrumentation, measurement, and metrology : Collimation
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 17, 2010
Revised Manuscript: May 21, 2010
Manuscript Accepted: May 22, 2010
Published: June 14, 2010

Citation
Steven C. West, Samuel H. Bailey, James H. Burge, Brian Cuerden, Jeff Hagen, Hubert M. Martin, and Michael T. Tuell, "Wavefront control of the Large Optics Test and Integration Site (LOTIS) 6.5m Collimator," Appl. Opt. 49, 3522-3537 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-18-3522


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. C. Robins, R. M. Bell, C. Eugeni, D. S. Theil, T. Miller, G. Cuzner, S. B. Hutchison, V. G. Zarifis, H. Bailey, J. Burge, and S. West, “The Large Optical Test and Integration Site (LOTIS),” presented at the Aerospace Testing Seminar (Manhattan Beach, California, April 2008).
  2. R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008). [CrossRef]
  3. S. B. Hutchison, A. Cochrane, S. McCord, and R. Bell, “Updated status and capabilities for the LOTIS 6.5 meter collimator,” Proc. SPIE 7106, 710618 (2008). [CrossRef]
  4. S. A. Borota, L. H. Li, G. Cuzner, Sheldon Hutchison, and A. T. Cochrane, “Atmospheric optical turbulence measurements in the LOTIS vacuum chamber and LOTIS Collimator jitter analysis results,” Proc. SPIE 7330, 733003 (2009). [CrossRef]
  5. C. Roddier and F. Roddier, “Wavefront reconstruction from defocused images and the test of ground-based optical telescopes,” J. Opt. Soc. Am. A 10, 2277–2287 (1993). [CrossRef]
  6. R. B. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656–660 (1971).
  7. H. M. Martin, R. G. Allen, J. H. Burge, L. R. Dettmann, D. A. Ketelsen, S. M. Miller, and J. M. Sasian, “Fabrication of mirrors for the Magellan telescopes and the Large Binocular Telescope,” Proc. SPIE 4837, 609–618 (2003). [CrossRef]
  8. J. H. Burge, D. Anderson, D. A. Ketelsen, and S. C. West, “Null test optics for the MMT and Magellan 6.5mf/1.25 primary mirrors,” Proc. SPIE 2199, 658–669 (1994). [CrossRef]
  9. S. C. West, H. M. Martin, R. H. Nagel, R. S. Young, W. B. Davison, T. J. Trebisky, S. T. DeRigne, and B. B. Hille, “Practical design and performance of the stress-lap polishing tool,” Appl. Opt. 33, 8094–8100 (1994). [CrossRef] [PubMed]
  10. J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4 meter borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998). [CrossRef]
  11. D. Clark, W. Kindred, and J. T. Williams, “In-situ aluminization of the MMT 6.5m primary mirror,” Proc. SPIE 6273, 627305 (2006). [CrossRef]
  12. J. H. Burge, “Certification of null correctors for primary mirrors,” Proc. SPIE 1994, 248–259 (1994). [CrossRef]
  13. H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Porodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998). [CrossRef]
  14. S. C. West, “Interferometric Hartmann wavefront sensing for active optics at the 6.5m conversion of the Multiple Mirror Telescope,” Appl. Opt. 41, 3781–3789 (2002). [CrossRef] [PubMed]
  15. H. M. Martin, B. Cuerden, L. R. Dettmann, and J. M. Hill, “Active optics and force optimization for the first 8.4m LBT mirror,” Proc. SPIE 5489, 826–837 (2004). [CrossRef]
  16. D. Malacara, Optical Shop Testing, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley-Interscience, 1992), Table 13.2, p. 465.
  17. M. Miler, C. W. Slinger, and J. M. Heaton, “Off-axis holographic zone plates recorded and reconstructed by cylindrical wavefronts,” Opt. Acta 31, 745–758 (1984). [CrossRef]
  18. W. Zmeck and G.-Y. Shen, “Mirror alignment and/or figure sensing with surface mounted holographic elements,” U.S. patent 5,274,479 (23 December 1993).
  19. J. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” Proc. SPIE 2576, 258–269 (1995). [CrossRef]
  20. R. V. Shack and K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE 251, 146–153 (1980). [CrossRef]
  21. B. A. McLeod, “Collimation of fast wide-field telescopes,” Pub. Astron. Soc. Pacific 108, 217–219 (1996). [CrossRef]
  22. R. N. Wilson and B. Delabre, “Concerning the alignment of modern telescopes: theory, practice, and tolerances illustrated by the ESO NTT,” Pub. Astron. Soc. Pacific 109, 53–60 (1997). [CrossRef]
  23. M. Tuell, “Novel tooling for production of aspheric surfaces,” M. S. thesis No. AAT 1410263 (University of Arizona, 2002).
  24. S. C. West, “Procedure for registering the boresight alignment fixture to the LOTIS Primary Mirror,” Technical memorandum 00081 (LOTCO, 2006).
  25. S. Qian, W. Jark, G. Sostero, A. Gambitta, F. Mazzolini, and A. Savoia, “Precise measuring method for detecting the in situ distortion profile of a high-heat-load mirror for synchrotron radiation by use of a pentaprism long trace profiler,” Appl. Opt. 36, 3769–3775 (1997). [CrossRef] [PubMed]
  26. P. Su, J. H. Burge, B. Cuerden, J. Sasian, and H. M. Martin, “Scanning pentaprism measurements of off-axis aspherics,” Proc. SPIE 7018, 70183T (2008). [CrossRef]
  27. J. Yellowhair and J. H. Burge, “Analysis of a scanning pentaprism system for measurements of large flat mirrors,” Appl. Opt. 46, 8466–8474 (2007). [CrossRef] [PubMed]
  28. P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-meter flat using a pentaprism scanning system,” Opt. Eng. 46, 023602 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited