OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 18 — Jun. 20, 2010
  • pp: 3545–3551

Laboratory measurements of light beam depolarization on turbulent convective flow

Sarah Woods, Jacek Piskozub, Wlodzimierz Freda, Miroslaw Jonasz, and Darek Bogucki  »View Author Affiliations


Applied Optics, Vol. 49, Issue 18, pp. 3545-3551 (2010)
http://dx.doi.org/10.1364/AO.49.003545


View Full Text Article

Enhanced HTML    Acrobat PDF (535 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laboratory measurements of light beam depolarization by a turbulent flow, corresponding to oceanic turbulence within the oceanic mixed layer, show that the depolarization rate ( 1 × 10 5 m 1 to 3 × 10 3 m 1 ) correlates with turbulence strength and is consistent with polarized lidar observations [ Opt. Express, 16, 1196 (2008)]. These results imply that one should be able to characterize oceanic turbulence with polarimetric oceanic lidar measurements.

© 2010 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7060) Atmospheric and oceanic optics : Turbulence
(260.5430) Physical optics : Polarization

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 15, 2009
Revised Manuscript: December 31, 2009
Manuscript Accepted: January 23, 2010
Published: June 16, 2010

Citation
Sarah Woods, Jacek Piskozub, Wlodzimierz Freda, Miroslaw Jonasz, and Darek Bogucki, "Laboratory measurements of light beam depolarization on turbulent convective flow," Appl. Opt. 49, 3545-3551 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-18-3545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Bogucki, J. A. Domaradzki, D. Stramski, and J. R. Zaneveld, “Comparison of near-forward light scattering on oceanic turbulence and particles,” Appl. Opt. 37, 4669–4677 (1998). [CrossRef]
  2. D. J. Bogucki, J. A. Domaradzki, R. E. Ecke, and C. R. Truman, “Light scattering on oceanic turbulence,” Appl. Opt. 43, 5662–5668 (2004). [CrossRef] [PubMed]
  3. J. S. Jaffe, “Monte Carlo modeling of underwater-image formation: validity of the linear and small-angle approximations,” Appl. Opt. 34, 5413–5421 (1995). [CrossRef] [PubMed]
  4. D. J. Bogucki, J. Piskozub, M.-E. Carr, and G. D. Spiers, “Monte Carlo simulation of propagation of a short light beam through turbulent oceanic flow,” Opt. Express 15, 13988–13996 (2007). [CrossRef] [PubMed]
  5. J. W. Strohbehn and S. F. Clifford, “Polarization and angle-of-arrival fluctuations for a plane wave propagated through a turbulent medium,” IEEE Trans. Antennas Propag. 15, 416–421 (1967). [CrossRef]
  6. J. H. Churnside, “Polarization effects on oceanographic lidar,” Opt. Express 16, 1196–1207 (2008). [CrossRef] [PubMed]
  7. P. Yang, H. Wei, G. W. Kattawar, Y. X. Hu, D. M. Winker, C. A. Hostetler, and B. A. Baum, “Sensitivity of the backscattering Mueller matrix to particle shape and thermodynamic phase,” Appl. Opt. 42, 4389–4395 (2003). [CrossRef] [PubMed]
  8. C. Hu, G. W. Kattawar, M. E. Parkin, and P. Herb, “Symmetry theorems on the forward and backward scattering Mueller matrices for light scattering from a nonspherical dielectric scatterer,” Appl. Opt. 26, 4159–4173 (1987). [CrossRef] [PubMed]
  9. R. W. Spinrad and J. Brown, “Effects of asphericity on single-particle polarized light scattering,” Appl. Opt. 32, 6151–6158(1993). [CrossRef] [PubMed]
  10. S. Asano and M. Sato, “Light scattering by randomly oriented spheroidal particles,” Appl. Opt. 19, 962–974 (1980). [CrossRef] [PubMed]
  11. A. Hielscher, A. Eick, J. Mourant, D. Shen, J. Freyer, and I. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441–453 (1997). [CrossRef] [PubMed]
  12. A. Anis and J. Moum, “Surface wave-turbulence interactions. Scaling ε(z) near the sea surface,” J. Phys. Oceanogr. 25, 2025–2045 (1995). [CrossRef]
  13. J. W. Strohbehn, “Line-of-sight wave propagation through the turbulent atmosphere,” Proc. IEEE 56, 1301–1318 (1968). [CrossRef]
  14. A. D. Kim and M. Moscoso, “Influence of the refractive index on the depolarization of multiply scattered waves,” Phys. Rev. E 64, 026612 (2001). [CrossRef]
  15. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  16. L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, “Depolarization of backscattered linearly polarized light,” J. Opt. Soc. Am. A 21, 1799–1804 (2004). [CrossRef]
  17. J. A. Domaradzki and R. W. Metcalfe, “Direct numerical simulations of the effects of shear on turbulent Rayleigh–Bénard convection,” J. Fluid Mech. 193, 499–531 (1988). [CrossRef]
  18. D. J. Bogucki (Texas A&M University—Corpus Christi, 6300 Ocean Drive, HRI 102, Corpus Christi, Texas 78412), S. Woods, and J. A. Domaradzki are preparing a manuscript to be called “Laboratory measurements of energy and temperature dissipation rate for convective flows with Ra=4×106 to 109.”
  19. A. M. Fincham and G. R. Spedding, “Low cost, high resolution DPIV for measurement of turbulent fluid flow,” Exp. Fluids 23, 449–462 (1997). [CrossRef]
  20. D. J. Bogucki, J. A. Domaradzki, C. Anderson, H. W. Wijesekera, R. V. Zaneveld, and C. Moore, “Optical measurement of rates of dissipation of temperature variance due to oceanic turbulence,” Opt. Express 15, 7224–7230 (2007). [CrossRef] [PubMed]
  21. H. Hodara “Laser wave propagation through the atmosphere,” Proc. IEEE 54, 368–375 (1966).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited