OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 18 — Jun. 20, 2010
  • pp: 3552–3559

Scattering properties of sands. 2. Results for sands from different origins

Jean-Baptiste Renard, Mirvatte Francis, Edith Hadamcik, Daniel Daugeron, Benoît Couté, Bertrand Gaubicher, and Matthieu Jeannot  »View Author Affiliations


Applied Optics, Vol. 49, Issue 18, pp. 3552-3559 (2010)
http://dx.doi.org/10.1364/AO.49.003552


View Full Text Article

Enhanced HTML    Acrobat PDF (1204 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mineral sand is a major component of aerosols in the atmosphere. It is necessary to have a laboratory database to interpret the remote sensing measurements of light scattered by such grains. For this purpose, the PROGRA2 experiment is dedicated to the retrieval of polarization and brightness phase curves, in the visible wavelength domain, of various grains that can be found in Earth’s atmosphere and in space. The measurements of the scattered light by levitating clouds of grains are conducted at two wavelengths, 632.8 and 543.5 nm , with PROGRA2-VIS. Large grains (at least tens of micrometers) are studied in microgravity conditions during parabolic flights; smaller (micrometer-sized) grains are lifted by an air draught in ground-based conditions. The PROGRA2-SURF instrument allows measurements on the grains deposited on a plane surface, at the same wavelengths. New data for the scattering properties are presented for sands of various origins, including fine clay. The polarimetric phase curves for levitating grains are close to each other for all the samples (except for black sands); small discrepancies are mainly due to grains’ light absorption differences. The polarization curves for levitating grains differ strongly from those of deposited grains (dry or wet). In particular, these curves can be used to interpret remote sensing measurements to distinguish between grains at ground and grains transported by winds.

© 2010 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 3, 2010
Revised Manuscript: May 27, 2010
Manuscript Accepted: June 1, 2010
Published: June 16, 2010

Citation
Jean-Baptiste Renard, Mirvatte Francis, Edith Hadamcik, Daniel Daugeron, Benoît Couté, Bertrand Gaubicher, and Matthieu Jeannot, "Scattering properties of sands. 2. Results for sands from different origins," Appl. Opt. 49, 3552-3559 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-18-3552


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Li, H. Maring, D. Savoie, K. Voss, and J. M. Prospero, “Dominance of mineral dust in aerosol light scattering in the North Atlantic trade winds,” Nature 380, 416–419 (1996). [CrossRef]
  2. J. M. Prospero and P. J. Lamb, “African droughts and dust transport to the Caribbean: climate change implications,” Science 302, 1024–1027 (2003). [CrossRef] [PubMed]
  3. I. Chiapello, C. Moulin, and J. M. Prospero, “Understanding the long-term variability of African dust transport as recorded in both Barbados surface concentrations and large-scale Total Ozone Mapping Spectrometer (TOMS) optical thickness,” J. Geophys. Res. 110, D18S10 (2005), [CrossRef]
  4. F. M. Bréon, J. L. Deuzé, D. Tanré, and M. Herman, “Validation of spaceborne estimates of aerosol loading from Sun photometer measurements with emphasis on polarization,” J. Geophys. Res. 102, 17187–17195 (1997). [CrossRef]
  5. T. Kusaka, T. Ema, and N. Taniguchi, “Extraction of optical properties of yellow sand dust from satellite-level data over east Asia,” in Proceedings of Geoscience and Remote Sensing Symposium IGARSS’98 (IEEE, 1998), Vol 2, pp. 876–878.
  6. C. Brogniez, N. Huret, S. Eckermann, E. D. Rivière, M. Pirre, M. Herman, J.-Y. Balois, C. Verwaerde, N. Larsen, and B. Knudsen, “Polar stratospheric cloud microphysical properties measured by the microRADIBAL instrument on 25 January 2000 above Esrange and modelling interpretation,” J. Geophys. Res. 108, 8332 (2003). [CrossRef]
  7. T. Kusaka, F. Satou, and Y. Hayato, “Optical properties of Kosa aerosols estimated from multispectral polarization,” Proc. SPIE 4891, 413–418 (2003). [CrossRef]
  8. G. S. Okin and T. H. Painter, “Effect of grains size on remotely sensed spectral reflectance of sandy desert surfaces,” Remote Sens. Environ. 89, 272–280 (2004). [CrossRef]
  9. D. Daugeron, J.-B. Renard, B. Gaubicher, B. Couté, E. Hadamcik, F. Gensdarmes, G. Basso, and C. Fournier, “Scattering properties of sands. 1. Comparison between different techniques of measurements,” Appl. Opt. 45, 8331–8337 (2006). [CrossRef] [PubMed]
  10. E. Hadamcik, J.-B. Renard, A.-C. Levasseur-Regourd, and J.-C. Worms, “Laboratory measurements of the light scattered by clouds of solid particles by imaging technique,” in Light Scattering Review 4, A.A.Kokhanovsky, ed. (Springer/Praxis, 2009), pp. 31–70. [CrossRef]
  11. B. Hapke, Theory of Reflectance and Emittance Spectroscopy, Vol. 3 of Topics in Remote Sensing (Cambridge U. Press, 1993). [CrossRef]
  12. O. Muñoz, H. Volten, J. W. Hovenier, Y. G. Shkuratov, W. J. van der Zande, and L. B. F. M. Waters, “Experimental and computational study of light scattering by irregular dust particles with extreme refractive indices: hematite and rutile,” Astron. Astrophys. 446, 525–535 (2006). [CrossRef]
  13. K. Muinonen, T. Nousiainen, H. Lindqvist, O. Muñoz, and G. Videen, “Light scattering by Gaussian particles with internal inclusions and roughened surfaces using ray optics,” J. Quant. Spectrosc. Radiat. Transfer 110, 1628–1639 (2009). [CrossRef]
  14. O. Muñoz, H. Volten, J. W. Hovenier, K. Muinonen, G. Guirado, F. Moreno, and L. B. F. M. Waters, “Scattering matrix of large Saharan dust particles: experiment and computations,” J. Geophys. Res. 112, D13215 (2006). [CrossRef]
  15. J.-C. Worms, J.-B. Renard, E. Hadamcik, N. Brun-Huret, and A.-C. Levasseur-Regourd, “Light scattering by dust particles with the PROGRA2 instrument—comparative measurements between clouds under microgravity and layers on the ground,” Planet. Space Sci. 48, 493–505 (2000). [CrossRef]
  16. Y. G. Shkuratov, N. V. Opanasenko, and M. A. Kreslavsky, “Polarimetric and photometric properties of the Moon: telescope observation and laboratory simulation. 1. The negative polarization,” Icarus 95, 283–299 (1992). [CrossRef]
  17. Y. G. Shkuratov and N. V. Opanasenko, “Polarimetric and photometric properties of the Moon: telescope observation and laboratory simulation. 2. The positive polarization,” Icarus 99, 468–484 (1992). [CrossRef]
  18. S. Bondarenko, A. Ovcharenko, Y. G. Shkuratov, G. Videen, and G. Nelson, “Particle size effect on the opposition spike and negative polarization,” J. Quant. Spectrosc. Radiat. Transfer 101, 394–403 (2006). [CrossRef]
  19. Y. Shkuratov, S. Bondarenko, A. Ovcharenko, C. Pieters, T. Hiroi, H. Volten, O. Muňoz, and G. Videen, “Comparative studies of the reflectance and degree of linear polarization of particulates surfaces and independently scattering particles,” J. Quant. Spectrosc. Radiat. Transfer 100, 340–358 (2006). [CrossRef]
  20. F. Kuik, P. Stammes, and J. W. Hovenier, “Experimental determination of scattering matrices of water droplets and quartz particles,” Appl. Opt. 30, 4872–4881 (1991). [CrossRef] [PubMed]
  21. R. A. West, L. R. Doose, A. M. Eibl, M. G. Tomasko, and M. I. Mishchenko, “Laboratory measurements of mineral dust scattering phase function and linear polarization,” J. Geophys. Res. 102, 16871–16881 (1997). [CrossRef]
  22. H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106, 17375–17401 (2001). [CrossRef]
  23. J. W. Hovenier, H. Volten, O. Muñoz, W. J. van der Zande, and L. B. F. M. Waters, “Laboratory studies of scattering matrices for randomly oriented particles: potentials, problems, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 741–755 (2003). [CrossRef]
  24. E. Hadamcik, J.-B. Renard, J.-C. Worms, A.-C. Levasseur-Regourd, and M. Masson, “Polarization of light scattered by fluffy particles (PROGRA2 experiment),” Icarus 155, 497–508(2002). [CrossRef]
  25. J.-C. Worms, J.-B. Renard, E. Hadamcik, A.-C. Levasseur-Regourd, and J.-F. Gayet, “Results of the PROGRA2 experiment: an experimental study in microgravity of scattered polarized light by dust particles with a large size parameter,” Icarus 142, 281–297 (1999). [CrossRef]
  26. G. A. d’Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosol—Global Climatology and Radiative Characteristics (Deepak1991).
  27. J. Lasue, Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas 77058 (personal communication).
  28. J.-B. Renard, J.-C. Worms, T. Lemaire, E. Hadamcik, and N. Huret, “Light scattering by dust particles in microgravity: polarization and brightness imaging with the new version of the PROGRA2 instrument,” Appl. Opt. 41, 609–618 (2002). [CrossRef] [PubMed]
  29. F. Dulac, LSCE/CEA, CEA-Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex, France (personal communication).
  30. D. M. Murphy, D. S. Thomson, and M. J. Mahoney, “In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers,” Science 282, 1664–1669 (1998). [CrossRef] [PubMed]
  31. J. Curtius, R. Weigel, H.-J. Vössing, H. Wernli, A. Werner, C.-M. Volk, P. Konopka, M. Krebsbach, C. Schiller, A. Roiger, H. Schlager, V. Dreiling, and S. Borrmann, “Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements,” Atmos. Chem. Phys. 5, 3053–3069 (2005). [CrossRef]
  32. J.-B. Renard, C. Brogniez, G. Berthet, Q. Bourgeois, B. Gaubicher, M. Chartier, J.-Y. Balois, C. Verwaerde, F. Auriol, P. Francois, D. Daugeron, and C. Engrand, “Vertical distribution of the different types of aerosols in the stratosphere, detection of solid particles and analysis of their spatial variability,” J. Geophys. Res. 113, D21303 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited