OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 18 — Jun. 20, 2010
  • pp: 3580–3586

Wavelength-diverse polarization modulators for Stokes polarimetry

Steven Tomczyk, Roberto Casini, Alfred G. de Wijn, and Peter G. Nelson  »View Author Affiliations

Applied Optics, Vol. 49, Issue 18, pp. 3580-3586 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (520 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Information about the three-dimensional structure of solar magnetic fields is encoded in the polarized spectra of solar radiation by a host of physical processes. To extract this information, solar spectra must be obtained in a variety of magnetically sensitive spectral lines at high spatial, spectral, and temporal resolution with high precision. The need to observe many different spectral lines drives the development of Stokes polarimeters with a high degree of wavelength diversity. We present a new paradigm for the design of polarization modulators that operate over a wide wavelength range with near-optimal polarimetric efficiency and are directly applicable to the next generation of multiline Stokes polarimeters. These modulators are not achromatic in the usual sense because their polarimetric properties vary with wavelength, but they do so in an optimal way. Thus, we refer to these modulators as polychromatic. We present here the theory behind polychromatic modulators, illustrate the concept with design examples, and present the performance properties of a prototype polychromatic modulator.

© 2010 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.4110) Optical devices : Modulators
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization
(350.1260) Other areas of optics : Astronomical optics

ToC Category:

Original Manuscript: March 29, 2010
Manuscript Accepted: May 5, 2010
Published: June 17, 2010

Steven Tomczyk, Roberto Casini, Alfred G. de Wijn, and Peter G. Nelson, "Wavelength-diverse polarization modulators for Stokes polarimetry," Appl. Opt. 49, 3580-3586 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. E. Hale, “On the probable existence of a magnetic field in sunspots,” Astrophys. J. 28, 315–343 (1908). [CrossRef]
  2. J. O. Stenflo, “The Hanle effect and the diagnostics of turbulent magnetic fields in the solar atmosphere,” Sol. Phys. 80, 209–226 (1982). [CrossRef]
  3. J. Trujillo Bueno, N. Shchukina, and A. Asensio Ramos, “A substantial amount of hidden magnetic energy in the quiet Sun,” Nature 430, 326–329 (2004). [CrossRef] [PubMed]
  4. M. Faurobert-Scholl, “Investigation of microturbulent magnetic fields in the solar photosphere by their Hanle effect in the Sr I 4607Åline,” Astron. Astrophys. 268, 765–774(1993).
  5. J. O. Stenflo and C. U. Keller, “The second solar spectrum. A new window for diagnostics of the Sun,” Astron. Astrophys. 321, 927–934 (1997).
  6. A. López Ariste, S. Tomczyk, and R. Casini, “Hyperfine structure as a diagnostic of solar magnetic fields,” Astrophys. J. 580, 519–527 (2002). [CrossRef]
  7. A. López Ariste, S. Tomczyk, and R. Casini, “Quiet sun magnetic field diagnostics with a Mn line,” Astron. Astrophys. 454, 663–668 (2006). [CrossRef]
  8. A. Asensio Ramos, M. Martínez González, A. López Ariste, J. Trujillo Bueno, and M. Collados, “A near-infrared line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere,” Astrophys. J. 659, 829–847 (2007). [CrossRef]
  9. J. Štěpán, P. Heinzel, and S. Sahal-Bréchot, “Hydrogen Hα line polarization in solar flares. Theoretical investigation of atomic polarization by proton beams considering self-consistent NLTE polarized radiative transfer,” Astron. Astrophys. 465, 621–631 (2007). [CrossRef]
  10. J. O. Stenflo, “Magnetic-field structure of the photospheric network,” Sol. Phys. 32, 41–63 (1973). [CrossRef]
  11. J. O. Stenflo, S. K. Solanki, and J. W. Harvey, “Diagnostics of solar magnetic fluxtubes with the infrared line Fe I λ15648.54Å,” Astron. Astrophys. 173, 167–179 (1987).
  12. I. Rüedi, S. K. Solanki, W. Livingston, and J. W. Harvey, “Interesting lines in the infrared solar spectrum. III. A polarimetric survey between 1.05 and 2.50μm,” Astron. Astrophys. 113, 91–106 (1995).
  13. H. Socas-Navarro, D. F. Elmore, A. Pietarila, T. Darnell, B. W. Lites, S. Tomczyk, and S. Hegwer, “SPINOR: Visible and infrared spectro-polarimetry at the National Solar Observatory,” Sol. Phys. 235, 55–73 (2006). [CrossRef]
  14. P. Goode, C. J. Denker, L. I. Didkovsky, J. R. Kuhn, and H. Wang, “1.6m solar telescope in Big Bear—the NST,” J. Korean Astron. Soc. 36, 125–133 (2003). [CrossRef]
  15. S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003). [CrossRef]
  16. M. Collados, “European Solar Telescope (EST): project status,” Proc. SPIE 7012, 70120J (2008). [CrossRef]
  17. A. V. Samoylov, V. S. Samoylov, A. P. Vidmachenko, and A. V. Perekhod, “Achromatic and super-achromatic zero-order waveplates,” J. Quant. Spectrosc. Radiat. Transfer 88, 319–325(2004). [CrossRef]
  18. J. Ma, J. S. Wang, C. Denker, and H. M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astron. Astrophys. 8, 349–361 (2008). [CrossRef]
  19. M. Collados, “High resolution spectropolarimetry and magnetography,” in 3rd Advances in Solar Physics Euroconference, B.Schmieder, A.Hoffman, and J.Staude, eds., ASP Conf. Ser. (1999), Vol. 184, pp. 3–22.
  20. J. C. del Toro Iniesta and M. Collados, “Optimum modulation and demodulation matrices for solar polarimetry,” Appl. Opt. 39, 1637–1642 (2000). [CrossRef]
  21. S. Tomczyk, G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. G. Judge, “An instrument to measure coronal emission line polarization,” Sol. Phys. 247, 411–428 (2008). [CrossRef]
  22. K. Sankarasubramanian, B. Lites, C. Gullixson, D. F. Elmore, S. Hegwer, K. V. Streander, T. Rimmele, S. Fletcher, S. Gregory, and M. Sigwarth, “The diffraction limited spectro-polarimeter,” in Solar Polarization 4, R.Casini and B.Lites, eds., ASP Conf. Ser. (2006), Vol. 358, pp. 201–204.
  23. Y. Hanaoka, “Ferroelectric liquid crystal polarimeter for high-cadence Hα imaging polarimetry,” Sol. Phys. 222, 265–278(2004). [CrossRef]
  24. D. Elmore, National Solar Observatory (private communication, 2008).
  25. A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry,” Opt. Eng. 38, 1402–1408 (1999). [CrossRef]
  26. D. Gisler, A. Feller, and A. Gandorfer, “Achromatic liquid crystal polarization modulator,” Proc. SPIE 4843, 45–54 (2003). [CrossRef]
  27. C. Xu, Z. Qu, X. Zhang, C. Jin, and X. Yan, “Polarimeter with two ferroelectric liquid-crystal modulators attached to the Yunnan solar tower,” Appl. Opt. 45, 8428–8433 (2006). [CrossRef] [PubMed]
  28. M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code,” Technometrics 21, 239–245 (1979). [CrossRef]
  29. B. W. Lites, “Rotating waveplates as polarization modulators for Stokes polarimetry of the Sun—evaluation of seeing-induced crosstalk errors,” Appl. Opt. 26, 3838–3845 (1987). [CrossRef] [PubMed]
  30. D. F. Elmore, R. Casini, G. L. Card, M. Davis, A. Lecinski, R. Lull, P. G. Nelson, and S. Tomczyk, “A new spectro-polarimeter for solar prominence and filament magnetic field measurements,” Proc. SPIE 7014, 701416 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited