OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 19 — Jul. 1, 2010
  • pp: 3652–3660

Photopolymerizable nanocomposites for holographic recording and sensor application

Elsa Leite, Izabela Naydenova, Svetlana Mintova, Louis Leclercq, and Vincent Toal  »View Author Affiliations

Applied Optics, Vol. 49, Issue 19, pp. 3652-3660 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (850 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Novel nanocomposites consisting of a water-soluble acrylamide-based photopolymer and colloidal zeolite nanoparticles of zeolite Beta and zeolite A were prepared. The interactions between the photopolymer components and zeolite nanoparticles in the photopolymerizable nanocomposites were characterized for the first time by C 13 nuclear magnetic resonance and visible spectroscopy. It was found that the zeolite Beta nanoparticles (up to 5 wt. % ) behave as a noninert additive, resulting in an effective increase in layer thickness, which causes doubling of the diffraction efficiency of the nanocomposite in comparison to that of the undoped photopolymer. On the other hand, the nanocomposite containing zeolite A nanoparticles showed no evidence of interaction with the polymer matrix, had similar values of diffraction efficiency, and—up to a small addition of nanoparticles (up to 2.5 wt. % )—showed slightly higher light-induced refractive index modulation of the grating when compared to the undoped photopolymer. The good optical compatibility between the zeolite nanoparticles and the polymer allows a versatile design of photopolymerizable nanocomposites with different properties by selecting the adequate type of zeolite. The nanocomposite containing zeolite Beta nanoparticles demonstrates selective sensing be havior toward toluene and can be coated in either glass or plastic substrates and exposed directly to the environmental conditions.

© 2010 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(160.5335) Materials : Photosensitive materials

ToC Category:

Original Manuscript: February 10, 2010
Revised Manuscript: May 4, 2010
Manuscript Accepted: June 2, 2010
Published: June 24, 2010

Elsa Leite, Izabela Naydenova, Svetlana Mintova, Louis Leclercq, and Vincent Toal, "Photopolymerizable nanocomposites for holographic recording and sensor application," Appl. Opt. 49, 3652-3660 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Gambogi, W. Gerstadt, S. Mackara, and A. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256 (1991). [CrossRef]
  2. S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005). [CrossRef] [PubMed]
  3. I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006). [CrossRef]
  4. P. Cheben and M. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001). [CrossRef]
  5. F. Del Monte, O. Martinez, J. Rodrigo, M. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18, 2014–2017 (2006). [CrossRef]
  6. Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003). [CrossRef]
  7. C. Sanchez, M. Escuti, C. Heesh, C. Bastiaansen, D. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15, 1623–1629 (2005). [CrossRef]
  8. O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007). [CrossRef]
  9. K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404nm,” Appl. Phys. 107, 023107(2010). [CrossRef]
  10. O. Martínez-Matos, M. Calvo, J. Rodrigo, P. Cheben, and F. Del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91, 141115 (2007). [CrossRef]
  11. S. Piazzolla and B. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147–1157 (2000). [CrossRef]
  12. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010). [CrossRef]
  13. Y. Tomita, “Holographic assembly of nanoparticles in photopolymers for photonic applications,” SPIE Newsroom: Micro/ Nano Lithography & Fabrication (2007). [CrossRef]
  14. L. Goldenberg, O. Sakhno, T. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20, 4619–4627 (2008). [CrossRef]
  15. C. Baerlocher, L. McCusker, and D. Olson, Atlas of Zeolite Framework Types (Elsevier, 2007).
  16. A. Dyer, An Introduction to Zeolite Molecular Sieves (Wiley, 1988).
  17. E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 11, 024016 (2009). [CrossRef]
  18. I. Naydenova and V. Toal, “Nanoparticle doped photopolymers for holographic applications,” in Ordered Porous Solids: Recent Advances and Prospects, V.Valtchev, S.Mintova, and M.Tsapatsis, eds. (Elsevier, 2008).
  19. S. Mintova, S. Mo, and T. Bein, “Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices,” Chem. Mater. 13, 901–905 (2001). [CrossRef]
  20. S. Mintova and T. Bein, “Nanosized zeolite films for vapor-sensing applications,” Meso. Mater. 50, 159–166 (2001). [CrossRef]
  21. Y. Zhang, Q. Su, Z. Wang, Y. Yang, Y. Xin, D. Han, X. Yang, H. Wang, X. Gao, and Z. Zhang “Synthesis and toluene adsorption/desorption property of Beta zeolite coated on cordierite honeycomb by an in situ crystallization method,” Chem. Eng. Technol. 31, 1856–1862 (2008). [CrossRef]
  22. N. Burke, D. Trimma, and R. Howe, “The effect of silica:alumina ratio and hydrothermal ageing on the adsorption characteristics of BEA zeolites for cold start emission control,” Appl. Cat. B Environ. 46, 97–104 (2003). [CrossRef]
  23. S. Mintova, M. Reinelt, T. Metzger, J. Senkera, and T. Bein, “Pure silica BETA colloidal zeolite assembled in thin films,” Chem. Commun. 3, 326–327 (2003). [CrossRef]
  24. S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994). [CrossRef]
  25. S. Mintova, N. Olson, V. Valtchev, and T. Bein, “Mechanism of zeolite A nanocrystal growth from colloids at room temperature,” Science 283, 958–960 (1999). [CrossRef] [PubMed]
  26. B. Mihailovab, V. Valtchev, S. Mintova, A.-C. Faust, N. Petkov, and T. Bein, “Interlayer stacking disorder in zeolite beta family: a Raman spectroscopic study,” Phys. Chem. Chem. Phys. 7, 2756–2763 (2005). [CrossRef]
  27. H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  28. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd ed. (Wiley-VCH, 2003).
  29. M. Rauf, A. Soliman, and M. Khattab, “Solvent effect on the spectral properties of Neutral Red,” Chem. Central J. 2, 19 (2008). [CrossRef]
  30. S. Islam, Y. Yoshikawa, M. Fujitsuka, A. Watanabe, and O. Ito, “Studies on photochemical processes of xanthene dyes by means of the transient absorption spectra in the visible/near-IR regions,” Bull. Chem. Soc. Jpn. 71, 1543–1548 (1998). [CrossRef]
  31. V. Hsiao, W. Kirkey, F. Chen, A. Cartwright, P. Prasad, and T. Bunning, “Organic solvent vapor detection using holographic photopolymer reflection gratings,” Adv. Mater. 17, 2211–2214(2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited