OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 19 — Jul. 1, 2010
  • pp: 3701–3712

Reflection interference contrast microscopy of arbitrary convex surfaces

Jose C. Contreras-Naranjo, James A. Silas, and Victor M. Ugaz  »View Author Affiliations

Applied Optics, Vol. 49, Issue 19, pp. 3701-3712 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1062 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current accurate applications of reflection interference contrast microscopy (RICM) are limited to known geometries; when the geometry of the object is unknown, an approximated fringe spacing analysis is usually performed. To complete an accurate RICM analysis in more general situations, we review and improve the formulation for intensity calculation based on nonplanar interface image formation theory and develop a method for its practical implementation in wedges and convex surfaces. In addition, a suitable RICM model for an arbitrary convex surface, with or without a uniform layer such as a membrane or ultrathin coating, is presented. Experimental work with polymer vesicles shows that the coupling of the improved RICM image formation theory, the calculation method, and the surface model allow an accurate reconstruction of the convex bottom shape of an object close to the substrate by fitting its experimental intensity pattern.

© 2010 Optical Society of America

OCIS Codes
(070.5010) Fourier optics and signal processing : Pattern recognition
(080.2720) Geometric optics : Mathematical methods (general)
(100.2650) Image processing : Fringe analysis
(100.3010) Image processing : Image reconstruction techniques
(100.6890) Image processing : Three-dimensional image processing
(180.3170) Microscopy : Interference microscopy

ToC Category:
Image Processing

Original Manuscript: February 4, 2010
Revised Manuscript: May 7, 2010
Manuscript Accepted: May 14, 2010
Published: June 23, 2010

Jose C. Contreras-Naranjo, James A. Silas, and Victor M. Ugaz, "Reflection interference contrast microscopy of arbitrary convex surfaces," Appl. Opt. 49, 3701-3712 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Wiegand, K. R. Neumaier, and E. Sackmann, “Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM),” Appl. Opt. 37, 6892–6905 (1998). [CrossRef]
  2. N. G. Clack and J. T. Groves, “Many-particle tracking with nanometer resolution in three dimensions by reflection interference contrast microscopy,” Langmuir 21, 6430–6435(2005). [CrossRef] [PubMed]
  3. E. W. Gomez, N. G. Clack, H. J. Wu, and J. T. Groves, “Like-charge interactions between colloidal particles are asymmetric with respect to sign,” Soft Matt. 5, 1931–1936 (2009). [CrossRef]
  4. A. Albersdorfer, T. Feder, and E. Sackmann, “Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: a model membrane study,” Biophys. J. 73, 245–257 (1997). [CrossRef] [PubMed]
  5. A. Kloboucek, A. Behrisch, J. Faix, and E. Sackmann, “Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study,” Biophys. J. 77, 2311–2328 (1999). [CrossRef] [PubMed]
  6. E. Sackmann and R. F. Bruinsma, “Cell adhesion as wetting transition?” Chem. Phys. Chem. 3, 262–269 (2002). [CrossRef] [PubMed]
  7. E. Sackmann and S. Goennenwein, “Cell adhesion as dynamic interplay of lock-and-key, generic and elastic forces,” Prog. Theor. Phys. Suppl. 78–99 (2006). [CrossRef]
  8. S. Moulinet and D. Bartolo, “Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces,” Eur. Phys. J. E 24, 251–260 (2007). [CrossRef] [PubMed]
  9. M. Sundberg, A. Mansson, and S. Tagerud, “Contact angle measurements by confocal microscopy for non-destructive microscale surface characterization,” J. Colloid Interface Sci. 313, 454–460 (2007). [CrossRef] [PubMed]
  10. B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, “Polymersomes: tough vesicles made from diblock copolymers,” Science 284, 1143–1146(1999). [CrossRef] [PubMed]
  11. B. M. Discher, H. Bermudez, D. A. Hammer, D. E. Discher, Y. Y. Won, and F. S. Bates, “Cross-linked polymersome membranes: vesicles with broadly adjustable properties,” J. Phys. Chem. B 106, 2848–2854 (2002). [CrossRef]
  12. K. Kita-Tokarczyk, J. Grumelard, T. Haefele, and W. Meier, “Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes,” Polymer 46, 3540–3563(2005). [CrossRef]
  13. A. Mecke, C. Dittrich, and W. Meier, “Biomimetic membranes designed from amphiphilic block copolymers,” Soft Matt. 2, 751–759 (2006). [CrossRef]
  14. G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, and H. Mohwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Colloids Surf. A 137, 253–266 (1998). [CrossRef]
  15. Y. Wang, A. S. Angelatos, and F. Caruso, “Template synthesis of nanostructured materials via layer-by-layer assembly,” Chem. Mater. 20, 848–858 (2008). [CrossRef]
  16. K. K. Liu, “Deformation behaviour of soft particles: a review,” J. Phys. D 39, R189–R199 (2006). [CrossRef]
  17. D. Gingell and I. Todd, “Interference reflection microscopy—a quantitative theory for image interpretation and its application to cell-substratum separation measurement,” Biophys. J. 26, 507–526 (1979). [CrossRef] [PubMed]
  18. J. Radler and E. Sackmann, “Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces,” J. Phys. (Paris) II 3, 727–748 (1993). [CrossRef]
  19. M. Kuhner and E. Sackmann, “Ultrathin hydrated dextran films grafted on glass: Preparation and characterization of structural, viscous, and elastic properties by quantitative microinterferometry,” Langmuir 12, 4866–4876 (1996). [CrossRef]
  20. O. Theodoly, Z.-H. Huang, and M.-P. Valignat, “New modeling of reflection interference contrast microscopy including polarization and numerical aperture effects: application to nanometric distance measurements and object profile reconstruction,” Langmuir 26, 1940–1948 (2010). [CrossRef]
  21. E. W. Weisstein, “Change of variables theorem,” retrieved from http://mathworld.wolfram.com/ChangeofVariablesTheorem.html.
  22. D. E. Discher and A. Eisenberg, “Polymer vesicles,” Science 297, 967–973 (2002). [CrossRef] [PubMed]
  23. J. Radler and E. Sackmann, “On the measurement of weak repulsive and frictional colloidal forces by reflection interference contrast microscopy,” Langmuir 8, 848–853 (1992). [CrossRef]
  24. H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, and D. E. Discher, “Molecular weight dependence of polymersome membrane structure, elasticity, and stability,” Macromol. 35, 8203–8208 (2002). [CrossRef]
  25. J. E. Mark, Polymer Data Handbook (Oxford U. Press, 1999).
  26. L. Limozin and K. Sengupta, “Modulation of vesicle adhesion and spreading kinetics by hyaluronan cushions,” Biophys. J. 93, 3300–3313 (2007). [CrossRef] [PubMed]
  27. G. Wiegand, T. Jaworek, G. Wegner, and E. Sackmann, “Studies of structure and local wetting properties on heterogeneous, micropatterned solid surfaces by microinterferometry,” J. Colloid Interface Sci. 196, 299–312 (1997). [CrossRef]
  28. K. W. Stockelhuber, B. Radoev, and H. J. Schulze, “Some new observations on line tension of microscopic droplets,” Colloids Surf. A 156, 323–333 (1999). [CrossRef]
  29. E. W. Weisstein, “Delaunay triangulation,” retrieved from http://mathworld.wolfram.com/DelaunayTriangulation.html.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited