OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 19 — Jul. 1, 2010
  • pp: 3713–3722

Retrieving radius, concentration, optical depth, and mass of different types of aerosols from high-resolution infrared nadir spectra

Lieven Clarisse, Daniel Hurtmans, Alfred J. Prata, Federico Karagulian, Cathy Clerbaux, Martine De Mazière, and Pierre-François Coheur  »View Author Affiliations


Applied Optics, Vol. 49, Issue 19, pp. 3713-3722 (2010)
http://dx.doi.org/10.1364/AO.49.003713


View Full Text Article

Enhanced HTML    Acrobat PDF (495 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a sophisticated radiative transfer code for modeling outgoing IR radiation from planetary atmospheres and, conversely, for retrieving atmospheric properties from high-resolution nadir-observed spectra. The forward model is built around a doubling-adding routine and calculates, in a spherical refractive geometry, the outgoing radiation emitted by the Earth and the atmosphere containing one layer of aerosol. The inverse model uses an optimal estimation approach and can simultaneously retrieve atmospheric trace gases, aerosol effective radius, and concentration. It is different from existing codes, as most forward codes dealing with multiple scattering assume a plane-parallel atmosphere, and as for the retrieval, it does not rely on precalculated spectra, the use of microwindows, or two-step retrievals. The simultaneous retrieval on a broad spectral range exploits the full potential of current state-of-the-art hyperspectral IR sounders, such as AIRS and IASI, and should be particularly useful in studying major pollution events. We present five example retrievals of IASI spectra observed in the range from 800 to 1200 cm 1 above dust, volcanic ash, sulfuric acid, ice particles, and biomass burning aerosols.

© 2010 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.5620) Atmospheric and oceanic optics : Radiative transfer
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 15, 2010
Revised Manuscript: May 12, 2010
Manuscript Accepted: May 18, 2010
Published: June 23, 2010

Citation
Lieven Clarisse, Daniel Hurtmans, Alfred J. Prata, Federico Karagulian, Cathy Clerbaux, Martine De Mazière, and Pierre-François Coheur, "Retrieving radius, concentration, optical depth, and mass of different types of aerosols from high-resolution infrared nadir spectra," Appl. Opt. 49, 3713-3722 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-19-3713


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. Fahey, J. Haywood, J. Lean, D. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. V. Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S.Solomon, D.Qin, M.Manning, Z.Chen, M.Marquis, K.Averyt, M.Tignor, and H.Miller, eds. (Cambridge U. Press, 2007), pp. 129–234.
  2. C. Textor, M. Schulz, S. Guibert, S. Kinne, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, H. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, L. Horowitz, P. Huang, I. Isaksen, I. Iversen, S. Kloster, D. Koch, A. Kirkevg, J. E. Kristjansson, M. Krol, A. Lauer, J. F. Lamarque, X. Liu, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier, T. Takemura, and X. Tie, “Analysis and quantification of the diversities of aerosol life cycles within AeroCom,” Atmos. Chem. Phys. 6, 1777–1813 (2006). [CrossRef]
  3. A. Kokhanovsky and G. de Leeuw, eds., Satellite Aerosol Remote Sensing Over Land (Springer, 2009). [CrossRef]
  4. Y. Kaufman, D. Tanré, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215–223 (2002). [CrossRef] [PubMed]
  5. L. Stowe, A. Ignatov, and R. Singh, “Development, validation, and potential enhancements to the second-generation operational aerosol product at the national environmental satellite, data, and information service of the national oceanic and atmospheric administration,” J. Geophys. Res. 102, 16923–16924 (1997). [CrossRef]
  6. O. Torres, P. Bhartia, J. Herman, A. Sinyuk, P. Ginoux, and B. Holben, “A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements,” J. Atmos. Sci. 59, 398–413 (2002). [CrossRef]
  7. M. McCormick, P. Hamill, T. Pepin, W. Chu, T. Swissler, and L. McMaster, “Satellite studies of the stratospheric aerosol,” Bull. Am. Meteorol. Soc. 60, 1038–1046 (1979). [CrossRef]
  8. M. King, Y. Kaufman, W. Menzel, and D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992). [CrossRef]
  9. R. Kahn, B. Gaitley, J. Martonchik, D. Diner, K. Crean, and B. Holben, “Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident aerosol robotic network (AERONET) observations,” J. Geophys. Res. 110, D10S04 (2005). [CrossRef]
  10. M. Herman, J. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005). [CrossRef]
  11. X. Fan, P. Goloub, J.-L. Deuzé, H. Chen, W. Zhang, D. Tanré, and Z. Li, “Evaluation of PARASOL aerosol retrieval over North East Asia,” Remote Sens. Environ. 112, 697–707 (2008). [CrossRef]
  12. Z. Li, X. Zhao, R. Kahn, M. Mishchenko, L. Remer, K.-H. Lee, M. Wang, I. Laszlo, T. Nakajima, and H. Maring, “Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective,” Ann. Geophys. 27, 2755–2770 (2009). [CrossRef]
  13. M. Mishchenko, B. Cairns, G. Kopp, C. Schueler, B. Fafaul, J. Hansen, R. Hooker, T. Itchkawich, H. Maring, and L. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the glory mission,” Bull. Am. Meteorol. Soc. 88, 677–691 (2007). [CrossRef]
  14. D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO Mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26, 2310–2323 (2009). [CrossRef]
  15. G. Vergé-Dépré, M. Legrand, C. Moulin, A. Alias, and P. François, “Improvement of the detection of desert dust over the Sahel using METEOSAT IR imagery,” Ann. Geophys. 24, 2065–2073(2006). [CrossRef]
  16. A. Prata, “Infrared radiative transfer calculations for volcanic ash clouds,” Geophys. Res. Lett. 16, 1293–1296 (1989). [CrossRef]
  17. S. Ackerman, “Remote sensing aerosols using satellite infrared observations,” J. Geophys. Res. 102, 17069–17079 (1997). [CrossRef]
  18. Y. Gu, W. Rose, and G. Bluth, “Retrieval of mass and sizes of particles in sandstorms using two MODIS IR bands: a case study of April 7, 2001 sandstorm in China,” Geophys. Res. Lett. 30, 1805–1808 (2003). [CrossRef]
  19. S. Wen and W. Rose, “Retrieval of size and total masses of particles in volcanic clouds using AVHRR bands 4 and 5,” J. Geophys. Res. 99, 5421–5431 (1994). [CrossRef]
  20. I. Watson, V. Realmuto, W. Rose, A. Prata, G. Bluth, Y. Gu, C. Bader, and T. Yu, “Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer,” J. Volcanol. Geotherm. Res. 135, 75–89 (2004). [CrossRef]
  21. C. Pierangelo, A. Chedin, S. Heilliette, N. Jacquinet-Husson, and R. Armante, “Dust altitude and infrared optical depth from AIRS,” Atmos. Chem. Phys. 4, 1813–1822 (2004). [CrossRef]
  22. S. Carn, L. Strow, S. de Souza-Machado, Y. Edmonds, and S. Hannon, “Quantifying tropospheric volcanic emissions with AIRS: the 2002 eruption of Mt. Etna (Italy),” Geophys. Res. Lett. 32, L02301 (2005). [CrossRef]
  23. C. Pierangelo, M. Mishchenko, Y. Balkanski, and A. Chedin, “Retrieving the effective radius of Saharan dust coarse mode from AIRS,” Geophys. Res. Lett. 32, L20813 (2005). [CrossRef]
  24. M. Kruglanski, M. D. Mazière, A. Vandaele, and D. Hurtmans, “Boundary layer aerosol retrieval from thermal infrared nadir sounding—preliminary results,” Adv. Space Res. 37, 2160–2165 (2006). [CrossRef]
  25. S. DeSouza-Machado, L. Strow, S. Hannon, and H. Motteler, “Infrared dust spectral signatures from AIRS,” Geophys. Res. Lett. 33, L03801 (2006). [CrossRef]
  26. L. Clarisse, P. F. Coheur, A. J. Prata, D. Hurtmans, A. Razavi, T. Phulpin, J. Hadji-Lazaro, and C. Clerbaux, “Tracking and quantifying volcanic SO2 with IASI, the September 2007 eruption at Jebel at Tair,” Atmos. Chem. Phys. 8, 7723–7734(2008). [CrossRef]
  27. Q. Yue and K. Liou, “Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra,” Geophys. Res. Lett. 36, L05810 (2009). [CrossRef]
  28. S. Peyridieu, A. Chédin, D. Tanré, V. Capelle, C. Pierangelo, N. Lamquin, and R. Armante, “Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic—comparison to MODIS and CALIPSO,” Atmos. Chem. Phys. 10, 1953–1967 (2010). [CrossRef]
  29. G. Thomas, E. Carboni, A. Sayer, C. Poulsen, R. Siddans, and R. Grainger, “Oxford-RAL Aerosol and Cloud (ORAC): aerosol retrievals from satellite radiometers,” in Satellite Aerosol Remote Sensing Over Land, A.Kokhanovsky and G.de Leeuw, eds. (Springer, 2009). [CrossRef]
  30. G. Gangale, A. Prata, and L. Clarisse, “The infrared spectral signature of volcanic ash determined from high-spectral resolution satellite measurements,” Remote Sens. Environ. 114, 414–425 (2010). [CrossRef]
  31. F. Karagulian, L. Clarisse, C. Clerbaux, A. J. Prata, D. Hurtmans, and P. Coheur, “Detection of volcanic SO2, ash and H2SO4 using the IASI sounder,” J. Geophys. Res. 115, D00L02 (2010). [CrossRef]
  32. C. Clerbaux, A. Boynard, L. Clarisse, M. George, J. Hadji-Lazaro, H. Herbin, D. Hurtmans, M. Pommier, A. Razavi, S. Turquety, C. Wespes, and P.-F. Coheur, “Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder,” Atmos. Chem. Phys. 9, 6041–6054 (2009). [CrossRef]
  33. P.-F. Coheur, B. Barret, S. Turquety, D. Hurtmans, J. Hadji-Lazaro, and C. Clerbaux, “Retrieval and characterization of ozone vertical profiles from a thermal infrared nadir sounder,” J. Geophys. Res. 110, D24303 (2005). [CrossRef]
  34. K. Birch and M. Downs, “Correction to the updated Edlén equation for the refractive-index of air,” Metrologia 31, 315–316 (1994). [CrossRef]
  35. D. Turner, “Systematic errors inherent in the current modeling of the reflected downward flux term used by remote sensing models,” Appl. Opt. 43, 2369–2383 (2004). [CrossRef] [PubMed]
  36. J. Hansen and L. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  37. K. Stamnes, S. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  38. C. Emde, S. Buehler, C. Davis, P. Eriksson, T. Sreerekha, and C. Teichmann, “A polarized discrete ordinate scattering model for simulations of limb and nadir long-wave measurements in 1-D/3-D spherical atmospheres,” J. Geophys. Res. 109, D24207(2004). [CrossRef]
  39. H. van de Hulst, “A new look at multiple scattering,” Tech. Rep. NASA TM-I03044 (Goddard Institute for Space Studies, 1963).
  40. K. Liou, Introduction to Atmospheric Radiation (Academic, 2002).
  41. Q. Liu and F. Weng, “Advanced doubling-adding method for radiative transfer in planetary atmospheres,” J. Atmos. Sci. 63, 3459–3465 (2006). [CrossRef]
  42. R. Goody and Y. Yung, Atmospheric Radiation: Theoretical Basis, 2nd ed. (Oxford U. Press, 1989).
  43. V. Cachorro and L. Salcedo, “New improvements for Mie scattering calculations,” J. Electromagn. Waves. Appl. 5, 913–926(1991). [CrossRef]
  44. H. Du, “Mie-scattering calculation,” Appl. Opt. 43, 1951–1956(2004). [CrossRef] [PubMed]
  45. M. Mishchenko, J. Hovenier, and L. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 1999).
  46. W. Wiscombe, “The delta-M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions,” J. Atmos. Sci. 34, 1408–1422 (1977). [CrossRef]
  47. C. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, Series on Atmospheric, Oceanic and Planetary Physics (World Scientific, 2000), Vol. 2. [CrossRef]
  48. J. Li, H. Huang, C. Liu, P. Yang, T. Schmit, H. Wei, E. Weisz, L. Guan, and W. Menzel, “Retrieval of cloud microphysical properties from MODIS and AIRS,” J. Appl. Meteorol. 44, 1526–1543 (2005). [CrossRef]
  49. A. Korolev, G. Isaac, J. Strapp, and A. Nevzorov, “In situ measurements of effective diameter and effective droplet number concentration,” J. Geophys. Res. 104, 3993–4003 (1999). [CrossRef]
  50. J. Reid, H. Jonsson, H. Maring, A. Smirnov, D. L. Savoie, S. Cliff, E. Reid, J. M. Livingston, M. M. Meier, O. Dubovik, and S.-C. Tsay, “Comparison of size and morphological measurements of coarse mode dust particles from Africa,” J. Geophys. Res. 108, 8593–8620 (2003). [CrossRef]
  51. D. Hofmann and J. Rosen, “Sulfuric acid droplet formation and growth in the stratosphere after the 1982 eruption of El Chichon,” Science 222, 325–327 (1983). [CrossRef] [PubMed]
  52. H. Steele, A. Eldering, and J. Lumpe, “Simulations of the accuracy in retrieving stratospheric aerosol effective radius, composition, and loading from infrared spectral transmission measurements,” Appl. Opt. 45, 2014–2027 (2006). [CrossRef] [PubMed]
  53. P. Hobbs, L. Radke, J. Lyons, R. Ferek, and D. Coffman, “Airborne measurements of particle and gas emissions from the 1990 volcanic eruptions of Mount Redoubt,” J. Geophys. Res. 96, 18735–18752 (1991). [CrossRef]
  54. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998). [CrossRef]
  55. K. Grant, C. Chuang, A. Grossman, and J. Penner, “Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols: parameterization of relative humidity effects and model results,” Atmos. Environ. 33, 2603–2620 (1999). [CrossRef]
  56. K. Hungershoefer, K. Zeromskiene, Y. Iinuma, G. Helas, J. Trentmann, T. Trautmann, R. S. Parmar, A. Wiedensohler, M. O. Andreae, and O. Schmid, “Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign,” Atmos. Chem. Phys. 8, 3427–3439 (2008). [CrossRef]
  57. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, 1969).
  58. F. Parol, J. Buriez, G. Brogniez, and Y. Fouquart, “Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles,” J. Appl. Meteorol. 30, 973–984 (1991). [CrossRef]
  59. I. Sokolik, “The spectral radiative signature of wind-blown mineral dust: Implications for remote sensing in the thermal IR region,” Geophys. Res. Lett. 29, 2154–2157 (2002). [CrossRef]
  60. I. Sokolik and O. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelenghts,” J. Geophys. Res. 104, 9423–9444 (1999). [CrossRef]
  61. E. Highwood, J. Haywood, M. Silverstone, S. M. Newman, and J. Taylor, “Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE): 2. terrestrial spectrum,” J. Geophys. Res. 108, 8578–8590 (2003). [CrossRef]
  62. F. Volz, “Infrared optical constants of ammonium sulfate, sahara dust; volcanic pumice and flyash,” Appl. Opt. 12, 564–568 (1973). [CrossRef] [PubMed]
  63. P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust-like aerosols,” J. Aerosol. Sci. 38, 995–1014(2007). [CrossRef]
  64. S. Carn, J. Pallister, L. Lara, J. Ewert, S. Watt, A. Prata, R. Thomas, and G. Villarosa, “The unexpected awakening of Chaitén volcano, Chile,” EOS Trans. Am. Geophys. Union 90, 205–207 (2009). [CrossRef]
  65. J. Pollack, O. Toon, and B. Khare, “Optical properties of some terrestrial rocks and glasses,” Icarus 19, 372–389(1973). [CrossRef]
  66. A. J. Prata, G. Gangale, L. Clarisse, and F. Karagulian, “Ash and sulphur dioxide in the 2008 eruptions of Okmok and Kasatochi insights from high spectral resolution satellite measurements,” J. Geophys. Res. (2010). [CrossRef]
  67. R. Grainer, A. Lambert, F. Taylor, J. Remedios, C. Rodgers, and M. Corney, “Infrared absorption by volcanic stratospheric aerosols observed by ISAMS,” Geophys. Res. Lett. 20, 1283–1286 (1993). [CrossRef]
  68. R. Tisdale, D. Glandorf, M. Tolbert, and O. Toon, “Infrared optical constants of low-temperature H2SO4 solutions representative of stratospheric sulfate aerosols,” J. Geophys. Res. 103, 25353–25370 (1998). [CrossRef]
  69. L. Boschetti, D. Roy, P. Barbosa, R. Boca, and C. Justice, “A MODIS assessment of the summer 2007 extent burned in Greece,” Int. J. Remote Sens. 29, 2433–2436 (2008). [CrossRef]
  70. P.-F. Coheur, L. Clarisse, S. Turquety, D. Hurtmans, and C. Clerbaux, “IASI measurements of reactive trace species in biomass burning plumes,” Atmos. Chem. Phys. 9, 5655–5667(2009). [CrossRef]
  71. S. Turquety, D. Hurtmans, J. Hadji-Lazaro, P.-F. Coheur, C. Clerbaux, D. Josset, and C. Tsamalis, “Tracking the emission and transport of pollution from wildfires using the IASI CO retrievals: analysis of the summer 2007 Greek fires,” Atmos. Chem. Phys. 9, 4897–4913 (2009). [CrossRef]
  72. R. Sutherland and R. Khanna, “Optical properties of organic-based aerosols produced by burning vegetation,” Aerosol Sci. Technol. 14, 331–342 (1991). [CrossRef]
  73. B. Kahn, A. Eldering, S. Clough, E. Fetzer, E. Fishbein, M. Gunson, S.-Y. Lee, P. Lester, and V. Realmuto, “Near micron-sized cirrus cloud particles in high-resolution infrared spectra: an orographic case study,” Geophys. Res. Lett. 30, 1441–1444 (2003). [CrossRef]
  74. M. L. Clapp, R. E. Miller, and D. R. Worsnop, “Frequency-dependent optical constants of water ice obtained directly from aerosol extinction spectra,” J. Phys. Chem. 99, 6317–6326 (1995). [CrossRef]
  75. P. Schlüssel, T. H. Hultberg, P. L. Phillips, T. August, and X. Calbet, “The operational IASI level 2 processor,” Adv. Space Res. 36, 982–988 (2005). [CrossRef]
  76. Q. Fu, W. Sun, and P. Yang, “Modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths,” J. Atmos. Sci. 56, 2937–2947 (1999). [CrossRef]
  77. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  78. G. D’Almeida, P. Koepke, and E. Shettle, Atmospheric Aerosols. Global Climatology and Radiative Characteristics (Deepak, 1991).
  79. J. S. Reid, R. Koppmann, T. F. Eck, and D. P. Eleuterio, “A review of biomass burning emissions, part II: intensive physical properties of biomass burning particles,” Atmos. Chem. Phys. 5, 799–825 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited