OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 19 — Jul. 1, 2010
  • pp: 3723–3731

High-energy flat-top beams for laser launching using a Gaussian mirror

Hiroki Fujiwara, Kathryn E. Brown, and Dana D. Dlott  »View Author Affiliations


Applied Optics, Vol. 49, Issue 19, pp. 3723-3731 (2010)
http://dx.doi.org/10.1364/AO.49.003723


View Full Text Article

Enhanced HTML    Acrobat PDF (964 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Converting a Gaussian to a flat-top beam is useful for many applications including laser-launched thin-foil flyer plates. A flat-top beam is needed to maintain a constant launch velocity across the flyer; otherwise, the flyer can disintegrate in flight. Here we discuss and demonstrate the use of a variable reflectivity mirror (VRM) with a Gaussian reflectivity profile with an additional hard aperture and compare it to a refractive beam shaper. An ideal VRM would generate a flat-top beam with 37% efficiency. Readily available high-power Gaussian or super-Gaussian mirrors create an approximate flat-top profile, but there is a trade-off between flatness and efficiency. We show that a super-Gaussian mirror can, in principle, convert an input Gaussian beam with 30% efficiency to a flat-top beam with 3% (maximum-to- minimum) variation. With a Gaussian mirror and a high-energy pulsed Nd:YAG laser having relatively poor beam quality, we generate flat-top beams with 25% conversion efficiency having 6% variation (standard deviation σ = 4.2 % ). The beams are used to launch 400 μm diameter, 25 μm thick Al flyer plates, whose flight was monitored by a high-speed displacement interferometer. The plates flew across a 300 μm gap at 1.3 km / s . The distribution of arrival times at the witness plate was 5 ns , as determined by the rise time of the impact emission. Compared to a total flight time of 260 ns , the velocity spread of different parts of the flyer plate was 2%.

© 2010 Optical Society of America

OCIS Codes
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 22, 2010
Manuscript Accepted: May 24, 2010
Published: June 23, 2010

Citation
Hiroki Fujiwara, Kathryn E. Brown, and Dana D. Dlott, "High-energy flat-top beams for laser launching using a Gaussian mirror," Appl. Opt. 49, 3723-3731 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-19-3723


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Paisley, D. C. Swift, R. P. Johnson, R. A. Kopp, and G. A. Kyrala, “Laser-launched flyer plates and direct laser shocks for dynamic material property measurements,” AIP Conf. Proc. 620, 1343–1346 (2002).
  2. H. Kiriyama, M. Michiaki, Y. Nakai, T. Shimomura, H. Sasao, M. Tanaka, Y. Ochi, M. Tanoue, H. Okada, S. Kondo, S. Kanazawa, A. Sagisaka, I. Daito, D. Wakai, F. Sasao, M. Suzuki, H. Kotakai, K. Kondo, A. Sugiyama, S. Bulanov, P. R. Bolton, H. Daido, S. Kawanishi, J. L. Collier, C. Hernandez-Gomez, C. J. Hooker, K. Ertel, T. Kimura, and T. Tajima, "High-spatiotemporal-quality petawatt-class laser system," Appl. Opt. 49, 2105–2115 (2010). [CrossRef] [PubMed]
  3. M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “A laser-accelerated flyer system,” Int. J. Impact Eng. 29, 317–321 (2003). [CrossRef]
  4. W. M. Trott, R. E. Setchell, and A. V. Farnsworth, Jr., “Development of laser-driven flyer techniques for equation-of-state studies of microscale materials,” AIP Conf. Proc. 620, 1347–1350 (2002).
  5. K. A. Tanaka, M. Hara, N. Ozaki, Y. Sasatani, K. Kondo, M. Nakano, K. Nishihara, H. Takenaka, M. Yoshida, and K. Mima, “Multi-layered flyer accelerated by laser induced shock waves,” Phys. Plasmas 7, 676–680 (2000). [CrossRef]
  6. W. M. Trott, “Investigation of the dynamic behavior of laser-driven flyers,” in High-Pressure Science and Technology, S.C.Schmidt, J.W.Shaner, G.A.Samara, and M.Ross, eds. (American Institute of Physics, 1993), pp. 1655–1658.
  7. R. J. Lawrence and W. M. Trott, “Theoretical analysis of a pulsed-laser-driven hypervelocity flyer launcher,” Int. J. Impact Eng. 14, 439–449 (1993). [CrossRef]
  8. S. Watson and J. E. Field, “Integrity of thin, laser-driven flyer plates,” J. Appl. Phys. 88, 3859–3864 (2000). [CrossRef]
  9. T. D. Rupp, R. J. Gehr, S. Bucholtz, D. L. Robbins, D. B. Stahl, and S. A. Sheffield, “Stereo camera system for three-dimensional reconstruction of a flyer plate in flight,” Rev. Sci. Instrum. 74, 5274–5281 (2003). [CrossRef]
  10. D. L. Paisley, S.-N. Luo, S. R. Greenfield, and A. C. Koskelo, “Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications,” Rev. Sci. Instrum. 79, 023902 (2008). [CrossRef] [PubMed]
  11. T. H. Bett, C. N. Danson, P. Jinks, D. A. Pepler, I. N. Ross, and R. M. Stevenson, “Binary phase zone-plate arrays for laser-beam spatial-intensity distribution conversion,” Appl. Opt. 34, 4025–4036 (1995). [CrossRef] [PubMed]
  12. H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100J level green laser beam homogenization to pump a petawatt class Ti:sapphire chirped-pulse amplification laser system,” Rev. Laser Eng. 37, 467–469 (2009).
  13. N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006). [CrossRef]
  14. D. C. Swift, “Simulations of laser-launched flyers,” Los Alamos Report LA-UR-04-6946, Los Alamos National Laboratory, Los Alamos, NM, 2004.
  15. M. Koenig, B. Faral, J. M. Boudenne, D. Batani, A. Benuzzi, and S. Bossi, “Optical smoothing techniques for shock wave generation in laser-produced plasmas,” Phys. Rev. E 50, R3314–R3317 (1994). [CrossRef]
  16. J. A. Hoffnagle and C. M. Jefferson, “Beam shaping with a plano-aspheric lens pair,” Opt. Eng. 42, 3090–3099 (2003). [CrossRef]
  17. J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt. 39, 5488–5499 (2000). [CrossRef]
  18. D. J. Armstrong and A. V. Smith, “Using a Newport refractive beam shaper to generate high-quality flat-top spatial profiles from a flashlamp-pumped commercial Nd:YAG laser,” Proc. SPIE 5525, 88–97 (2004). [CrossRef]
  19. C. W. Miller, H. Kishimura, S. C. Kelly, and N. N. Thadhani, “Laser-driven miniflyer system for shock compression studies,” AIP Conf. Proc. 1195, 1147–1150 (2009).
  20. M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “The development and study of a fiber delivery system for beam shaping,” Rev. Sci. Instrum. 73, 2185–2189 (2002). [CrossRef]
  21. W. M. Trott and K. D. Meeks, “High-power Nd:Glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990). [CrossRef]
  22. S. P. Chang, J.-M. Kuo, Y.-P. Lee, C.-M. Lu, and K.-J. Ling, “Transformation of Gaussian to coherent uniform beams by inverse-Gaussian transmittive filters,” Appl. Opt. 37, 747–752(1998). [CrossRef]
  23. J. Weng, X. X. Wang, Y. Ma, H. Tan, L. Cai, J. Li, and C. Liu, “A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser,” Rev. Sci. Instrum. 79, 113101 (2008). [CrossRef] [PubMed]
  24. A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007). [CrossRef] [PubMed]
  25. H. Fujiwara, K. E. Brown, and D. Dlott, “Laser-driven flyer plates for reactive materials research,” AIP Conf. Proc. 1195, 1317–1320 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited